May 1982 Report. No. STAN-CS-82-906

Trunca{ed-Newton Methods

by

Stephen Gregory Nash

JITIC QUALTYY LNEPECIHD &

A ol o T L TPk R o 420

o
SELSRILAN TINES T (33T 73 T
BIATION GIAE

-
BEBAZNS LS [A

7
~ Approvue e pusos reiecst) E
v snmsunoe Unhmoted

Department of Computer Science

Stanford University
Stanford, CA 94305

067

TRUNCATED-NEWTON METHODS

A DISSERTATION .
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
‘ IFOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

by _
Stephen Gregory Nash
May 1982

TRUNCATED-NEWTON METIIODS

Stephen G. Nash, Ph.D.
Stanflord University, 1982

The problem of minimizing a real-valued function F' of n variables arises in many
contexts. Most mcthods for solving this problem have their roots in Newton’s method, i.e.
they are based on approximating F' by a quadratic function Q. If the number of variables
n is large, then Newton’s method can be problematic since it requires the computation
and storage of the Hessian matrix of second derivatives. Use of finite-differencing and
sparse-matrix techniques has overcome some of thesc problems but not all. |

In this thesis, we examine a flexible class of methods, called truncated-Newton
methods. They are based on approximately minimizing the quadratic function @ using
an iterative scheme such as the lincar conjugate-gradient algorithm. A truncatcd-Ncwton-
algorithm is made up of two sub-algorithms: an outer non-lincar algorithm controlling
the entire minimization, and an inner linear algorithm for approximately minimizing Q.

The most important choice is the selection of the inner algorithm. When the Hessian
matrix is known to be positive-definite everywhere, then the basic linear conjugate-
gradient algorithm can be used. If not, @ may not have a minimum. We have used
the correspondence between the lincar conjugate-gradient algorithm and the Lanczos
algorithm for tridiagonalizing a symmetric matrix to develop mecthods for the indefinite
case. _

The performance of the inner algorithm can be greatly improved through the use of
preconditioning strategies. Preconditionings can be developed using either the outer non-
linear algorithrﬁ or using information computced during the inner algorithm. A number
of diagonal and tridiagonal preconditioning strategies are derived here.

Numerical tests show that a carefully chosen truncated-Newton method can per-
form significantly better than the best non-linear conjugate-gradicent algorithms available
today. This is important since the two classes of methods have comparable storage and
operation counts, and they are the only methods available for solving many large-scale

problems.

iii

Acknowledgments

I would like to thank the members of my reading committee—Walter Murray, Philip
Gill, Gene Golub, and Robert Séhreiber———for their advice and support in this work.
The problem was originally suggested by Walter Murray, and he has continued to make
insightful comments fhroughout the research. Philip Gill has also proved to be a valuable
mentor.

The generai -atmosphere within the Numerical Analysis Group and in the Computer
Science Department as a whole was very conducive. To a great extent, this is a result of
Gene Golub’s enthusiasm for the field.

The work in this dissertation was supported in part by the National Science Foun-
dation Grant MCS 78-17697, by U.S. Army Research Office Grant DAAG29-78-G0179,
and by a Natural Sciences and Engineering Research Council of Canada Postgraduate
Scholarship. It was prepared using Donald Knuth’s TEX typesetting system. The
facilities of the Stanford Linear Accelerator Center were used for the numerical com-
putations,

Finally, I would like to thank my family and friends for their support over the past:.

five years.

iv

Table of Contents

1. Introductio_n 1
L1. Motivation L 0 L e e e e s e e e e e 1
1.2. Notation and Basic Theory v . . v v v v v v v v .. 3
1.3. Basic Results in Linear Algebra 5
1.4. Line Search Techniques e e e e 6
1.5. Ratesof Convergence v v v v i i e e e e e e 9

2. TheBasicMethods v v, 10
2.1. Introduction oL L e e s e e e e 10
2.2. Newton’sMethod L ... 10
2.3. Quasi-NewtonMethods 13
2.4. Nonlinear Conjugate-gradient Algorithms 17
2.5. Adaptations and Extensions of the Traditional Methods 20

3. Truncated-Newton Methods, 24
3.1. Introduction oL L0 0oL oo oo 24
3.2. Basic Description of the Method 24
3.3. The Linear Conjugate-Gradient Algorithm 26
3.4. Indefinite Systems L . L L. e e e ... 30
3.5. Computing a Modified Factorization of a Tridiagonal Matrix 33
3.6. Computing a Direction of Negative Curvature 37
3.7. Minimum Residual Methods 39
3.8. Preconditioning the Lanczos Algorithm 41

4. Terminating the Linear Algorithm 43
41 Introduction L L L0 Lo s e 43
4.2. Termination Basedon Jlr®)||; L L L. 43
1.3. Alternative Assessment Criteria 44
4.4. Practical Forcing Sequences 48
4.5. Trust-RegionMethods 49

5. Preconditioning L L. L s e e e e e 52
5.1. Introduction L0 oL e ., 52

5.2. Preconditioning with a Nonlinear Algorithm 53

5.3. Diagonal Preconditioning of the Nonlinear Algorithm 54
5.4. Diagonal Preconditioning with MINRES 58
5.5. Tridiagonal Preconditioning 60
5.6. Approximating the Product of the Tridiagonal Preconditionings 61
. Extensions to Other Problems 00000 63
6.1. Introduction L o000 oo s o s s e 63
6.2. Constrained Minimization Problems 63
6.3. Problems with Linear Equality Constraints : 64
6.4. Linear Inequality Constraints 67
6.4.1. Theory . . . « & &« « 0 v e e e e e e e e e e e e e e e e e e 67
6.4.2. Application of Truhcated-Newton Methods 71
6.5. Least-Squares Problems e e 73
. Numerical Results o000 000000 76
7.1. Introduction L L0 L0 s e e e e e e e 76
7.2. The assessment criterion « .« v v v b e e e e e . 76
7.3. The algorithrﬁs tested L L. Lo o s 77
7.4. Thetestexamples &« ¢ v v v i v v v v e e e 78
7.5. Starting Points . .« « . . . e e e e e . P 81
7.6. Description of the BESES & v v e e e e e e e e e e e e e e 82
7.7. Discussionof resultso 000000000 83
7.8. A supplementary test problemo L. P 85
. Adapting Truncated-Newton Methods 88
8.1. Introduction L L L oL Lo e e e e e 88
8.2. Choices for sub-algorithms «« . . . 0.0 0. - 89
8.2.1. Approximately solving the Newton equations 90
8.2.2. Non-linear algorithms 92
8.2.3. Linear preconditionings v 4 v 4 4 e b i e e e e e . 94
8.2.4. Termination criteria for the linear algorithm e e e e e e 96
8.2.5. Computing matrix/vector produets e e e e e e 97
8.3. Choosing a complcte truncatgd-Newtoﬁ algorithm e 97

vi

8.3.1. The large-machinecase 00 .., 98

8.3.2. The small-machinecase v © v v v v v v v « v . 99
Appendix. L o o e s e e e e e e e e e e e e e e e e 101
Bibliography. L . L e e e e e e e e e e e e e e 110

vii

"1 Introduction

1.1. Motivation

The problem of minimizing a real-valued function of n variables

min F(z) (1.1.1)

arises in many contexts and applications. Over the years, a large vari.ety of methods have
‘been derived to solve this problem. Many of these methods have their roots in Newton’s
method, i.e. they are based on approximating F by a quadratic function using first-
and second-derivative information at the current point. The quadratic function is then
minimized, and it is hoped that this minimum gives information about the minimum of
the original function.

Much work has been done to adapt and improve this basic method. In part the
motivation for these changes is that the basic method is not always defined. For example,
if the Hessian matrix is indefinite at some iteration, then the quadratic does not have a
minimum.

Variations in the methods for problem (1.1.1) have also been derived for reasons
based on the nature of the objective function F'. There are basically two difficulties which
can arise. Firstly, if the number of variables n is large, then storage limitations can make
it difficult to store information about the problem. Seccondly, the second derivatives of
the function F may be very expensive (or impossible) to compute.

Because Newton’s method in its tradilional form requires the computation and
storage of the n X n matrix of second derivatives, it can be problematic for both of
these reasons. Use of {inite-differencing and sparse-matrix techniques has overcome some
of these problems, but not all.

The other chief classes of methods are Quasi-Newton and Conjugate-Gradient algo-
rithms. Quasi-Newton methods do nol require any sccond-derivative information; they
still require the storage of an m X n matrix. Conjugate-gradient methods, however,
remove even this difficulty, since they only require a few n vectors.

These difficulties are not overcome without some cost. In terms of the total number
of iterations (or function cvaluations) required to solve a minimization problem, Newton's
method is extremely efficient. Quasi-Newton methods can often approach this cfficiency

1

on small problems, but the performance of conjugate-gradient methods is by comparison

erratic.

These diffcrences in requircments and performance for the three classes of methods
arc unfortunate. They imply that all minimization problems must also be put into one
of three classes, based on which algorithm is best capable of solving them on a given
machine. Unfortunately, differences betwcen problems are not always very sharp. It

would be preferable if the distinctions between algorithms were not as great.

In the last few years, work has been done to fill in the gap betwcen conjugate-
gradient and quasi-Newlon methods. This work comes under the category of limited-
memory Quasi-Newton methods. More recently still, truncated-Newton mecthods have
been developed. In the context in which we will develop them, they can be viewed as a

synthesis of all three basic methods.

The great advantage of truncated-Newton methods is their flexibility. They can be
adjusted to emulate any of the standard algorithms as well as everything in-between.
They have variable storage requirements. It is possible to adjust them to use varying
amounts of second-derivative information. It is also possible to fine-tunc these methods
to the needs of the problem being solved. Potentially, they can also adapt to changes in

the behavior of the function being minimized.

In addition, we are concerned with the effect the computing environment has on
the choice of an algorithm. When using a large, central computing facility complete
with program libraries and technical consultants, then efficiency and stability of the
method are the only considcrations. However, when a small machine is the primary device
available, then the size and complexity of the program must also be taken into account.
This situation is becoming ever more important as the cost of small machines continues
to drop, and as distributed computing becomes a more popular way of allocating machine

resources,

The main topic of this thcéis is the cffective implementation of truncaled-Newton
methods. After some necessary preliminaries, it begins with a discussion of the three
traditional classes of algorithms, along with a discussion of the techniques which are used
to make them useful for larger classes of problems. This is [ollowed by a description of
truncated-Newton methods in their most basic form, along with a discussion of some of
the underlying algorithms that might be used to implement them. Chapter 4 deals with

2

convergence criteria for the sub-algorithm, and Chapter 5 with preconditioning, which
is cssential if these methods are to be competitive. Chapter 6 discusses extensions to
constrained and least-squares problems. Numerical results arc presented in Chapter 7.
Finally, an extensive discussion of how to adapt truncated-Newton methods for specific
problems (both through a priori information and through dynamic inodiﬁcation of the

algorithm) is given in Chapter 8.

'1.2. Notation and Basic Theory

The principal problem we are trying to solve in this thesis is

in I 1.2.1
min F(z), (12.1)

where F'(z) is a nonlincar real-valued function of the variables

Ty

Zn
and R™ denotes the n-dimensional Euclidean space. The gradient of I will be denoted

by the vector g where
dF(z)
622; ’

gi = 1=1,2,...,n,

and G will be used to denote the n X n matrix of sccond derivates, i.e.

dz;0z; i=12,...,n.

All methods considered here for solving (1.2.1) will be descent methods; that is,
the value of the objective function F'(z) will be decreased at each iteration. More
specifically, except in the section which describes trust-region methods, we will principally
be concerned with lihe-scarch algorithms. As a result, all of our algorithms will have the

following general form:

1.2.2. Descent Algorithm

D1. Given z(¥), the k*" approximation fo z*, a minimum of F(z).
D2. Compute p'¥), a dircction of search, such that p(")Tg(") < 0.
D3. Find a*) > 0, a scalar step-length, such that F(z®) 4 o(<)plk)) <«
F(z(¥). |

D4. Sct z(k+D z(k) + a®)ptk) and return to step D2.

Step D3 is called the line-search, and it will be discussed later in this chapter. I'or
our purposcs, step D2 will be the most significant, for the process used to compute p(k)
generally classifies the entire algorithm. This computation is often based on the gradient
or the Iessian at the point z(¥) (denoted by g®) and G¥), respectively), or on information
accumulated in previous iterations.

A considerable amount of the work in step D2 is dependent on results from linear
algebra. The principal theorctical results will be presented in the next section, but first
some notational details will be discussed here.

In general, matrices will be denoted by upper-case Roman letters (G), and their
elements will be specified using subscripts (G;;). Veetors will be denoted by lower-case
Roman letters, with subscripts again being used for individual elements (g, g;). Scalars -
will be denoted by lower-case Greek letters (a). A superfix Ton a matrix or vector denotes
transpose. ||y|| denotes the Kuclidean norm of the vector y. Other than those vectors
already mentioned, in the context of optimization there are two additional vectors which

have special meaning. These are

s = let1) _ gk

the difference between the successive estimates of the minimum, and

Yy = glk+D) _ g(k)

the difference between the successive gradient values.

In order to lbe able to terminate algorithm (1.2.2), it is important to know how to
identify =", the point which minimizes the function F'. The following theorem gives
necessary and sufficient conditions for the minimum of an unconstrained real-valued
function. .

Theorem 1.2.3 (a) Let z° be a relalive minimum point of the twice continuously
differentiable function F. Then g{z*) = 0 and G(z”) is positive semi-definite. (See
section 1.3 for a definition of positive semi-definite.)

(b) Suppose that F is a twice continuously differentiable function mapping from Rr"
to ®. Supposc in addition that z* is a point in R” for which g(z") = 0 and G(z") is
positive definite. Then z” is a strict rclative minimum point of F.

4

1.3. Basic Results in Linear 'A]gebra

The information in this section will be presented briefly and without proof. A much

more complete discussion can be found in Wilkinson [1965], Chapter 1.

Definitions:

1. A matrix A is symmetric if A = AT,

2. A symmetric matrix A is positive definite if
yTAy > 0, Yy # 0.
3. A symmetric matrix A is positive semi-definite if
yTAy >0, Vg

[Similar definitions exist for negative definite and negative semi-definite

matrices. A matrix falling into none of these categorics is called indefinite.]

4. A set of vectors {ay,...,an} is linearly independent if
n
2 Pya; =0
=1

implies that

5. The space spanned by a set of vectors is the space generated by all
linear combinations of those vectors.

6. The rank of a matrix A is equal to the maximum number of lincarly-
independent rows.

7. The range of a matrix A, denoted by R(A), is the space épanned by
the columns of A.

8. The null space of a matrix A, denoted by N(A), is {z | ATz = 0}.

9. The condition number of a non-singular matrix A is defined to be
x(4) = (||| - |a71],

where ||-]| is the 2-norm of a matrix.

5

10. A matrix A is lower (upper) triangular if
Ayy=0, i<j (i>j)
A is unit lower (upper) triangular if, in addition, A; =1, Vi.

Results:

1. Let A be an n by n symmetric matrix. Then there exist n orthonormal

vectors vg,...,vn and n scalars A\q,..., A, such that
Av; = N\, t1=1,...,n.

The vector v; is an eigenvector of A, and), is its associated eigenvalue.
2. A symmetric matrix of rank » has r non-zero eigenvalues.

3. A positive-definite matrix has positive eigenvalues.

4. A symmetric matrix A is positive definite if and only if it can be
factored as | |

A= LDLY,

where L is unit lower triangular and D is diagonal with positive diagonal

entries. [Cholesky factorization]

1.4. Line Search Techniques

As in the previous section, this will only be a bricl discussion of the topic of line
scarches. More complete information can be found in Gill and Murray [1979] and [1974b].
Step D3 of algorithm (1.2.2) requires that a scalar a be found such that

F(z + ap) < F(z). (1.4.1)

[The superscript (%) will be dropped for rcasons of clarity.] One way to achicve this is to
require that

F(z + ap) = £n>u(1) F(z + ap). (1.4.2)

Although neccessary for 1-dimensional minimization, this condition is overly stringent in
a higher-dimensional context (and of little usc for constrained optimization).
At the opposite extreme, it is not sullicient to choose just any value of a such that

6

(1.4.1) is satisfied. To sce this, consider the simple 1-dimensional problem:

F(z) = 72,

2V = 2,

p® = -1, Vk,
* alk) = 9k,

It is casily seen that the sequence {z(¥)} satisfies (1.4.1) but that

lim 2 =1£0=2z".
k-+c0

In order to efficiently minimize functions of scveral variables, and also to be able

to guarantee convergence of optimization algorithms, a compromise between these two

posilions has been found to be effective. In this regard, two concepts have been shown to

be of considerable value. The first is that the search direction must not become arbitrarily

close to being orthogonal to the steepest descent direction (that is, the gradient). Usually

this is achieved by the method uscd to choose the search direction.

If this property is satisficd, then the second condition is that the function F(z)

must be “sufficiently” reduced at each iteration. This condition is often achieved by an

appropriate choice of step length within a line search algorithm. One such algorithm is

presented here.

(1.4.3) Line search algorithm

Let {o;} define a sequence of points that tend in the limit to the minimum

of F(z) along p. (Il F(z) is smooth, this scquence can be computed by

means of some safeguarded polynomial interpolation algorithm.) Let ¢ be

the index of the first member of this sequence such that

lg(z + a:p)p| < —ng"p

where 7 (0 < 7 < 1) is some constant scalar. Let p (0 < p < 1) be

another constant scalar. Find the smallest non-negative integer 7 such

that
F(z)—F(z + 2 "oup) > =2 "cupug™p

and set a = 27" ;.11

If & is compuled according to this rule, it can be shown (Gill and Murray [1973a])

7

that

T,
Fz) - F(z + ap) > ¢(-”:j;ﬂ’-’-)

where ¢ is a real-valucd function such that, for any sequence {cx},

klim é(ex) =0 implies klim ek = 0.

An important property of conditions (1.4.4) and (1.4.5) is that if p is chosen as a small
value (say 1074) then, unless F(z) is a pathologically ill-bchaved function, any value of
o satisfying (1.4.4) automatically satisfies (1.4.5) with r = 0. In this case the linc scarch

algorithm reduces to finding a scalar « such that

l9(z + ap)Tp| < —ngTp.

The value of 7 can be specified by the user and can be used to give a step length that is
well-suited to the problem being solved. If 7 is chosen as 0.9, the algorithm will generally
compute a “crude” value of «, provided it satisfies (1.4.5). This value will often be oy,
the initial guess for a. If 7 is chosen as zero, a will satisfy (1.4.2), the condition for an
exact line search.

In order for certain asymptotic com}ergcnce rales to be attained, it is often necessary
that ultimately o = 1 for Vk > K. For this reason, ag = 1 is a common feature of line-
search algorithms, but it is certainly not the only possibility. Davidon [1959] suggested

the following choice for ag
ap = —2(I'®F) — Flesv)) /g TR

whenever the qu.antity on the right hand side is less than or equal to 1. Here, F(est) jg a
user-specified estimate of the function value at the solution. (It is common for the user
to have some a priori information about the function F. If not, the choice agp = 1 can
be used.) This formula has been found to be quite successful computationally.

FFor nonlincar conjugatc—grédicnt algorithms (described in the next chapter), a fur-
ther condition in the line search is required in order to insure the descent property of the
search dircetion p(*+1) at the next iteration. Details of these requirements can be found
in Gill and Murray [1979].

One final remark that is relevant to the general topic of this thesis concerns the
computation of the sequence {a;} in (1.4.4). In many situations, this sequence will be

8

computed using function and grﬁdicnt values. However, when the gradient and function
are expensive to compute relative to the cost of computing the function alone (i.e. twice

the cost), this sequence can be computed using function values only (see Gill and Murray

[1974b)).

1.5. Rates of Convergence

In the chapters to follow, we will be concerned with the speed at which various

algorithms converge. The following definitions will be uselul for our purposes.

1. A sequence {z(*¥)}, converging to z°, is said to converge with Q-order

m if .
G|

—_— . 1.5.1
L o e < (51

2. The scquence {z(¥)} is said to converge Q-superlinearly if

(k+1) _ ,* :
=0 -z || _ . (1.5.2)

y
koo [l — 2]

3. The sequence {z(*¥)} is said to converge with R-order m if

1z — 2| < B k=0,1,... (1.5.3)

{

where {8k} is a sequence that converges to zero with Q-order m.

The most important instances of definition 1 are m = 1 (Q-lincar convergence)
and m = 2 (Q-quadratic convergence). Because Q-order rates of convergence are more
important for our purposes, the label Q- will often be dropped in the discussions to follow.
Only R-érder rates will be distinguished.

For a more complete treatment of rates of convergence, sec Ortega and Rheinboldt

[1970], pp. 281-298.

2 ‘ The Basic Methods

2.1 Introduction

Although we have so far mentioned only three basic classes of methods for solving
the unconstrained minimization problem (1.2.1), within each class there are a great many
{rarieties, and choice of the exact algorithm to use is not always easy. In the absence of
other considerations, Newton’s method is almost always the method of choice, at least
in its modern safeguarded versions. Other methods can be considered as compromises to
Newton’s method. _

The three classes of methods will be discussed from that perspective, since it leads
naturally to the discussion of truncated-Newton methods in the next chapter. Newton'’s
method will be discussed first; this will be followed by descriptions of quasi-Newton and
conjugate-gradient methods. In the last section, extensions and adaptations of these
algorithms-to larger classes of problems are presented.

It should be pointed out that all the methods in this and the next chapter will' be
developed as linesearch algorithms. Alternative versions of these methods employing

trust-region schemes will be presented in a later chapter.

2.2 Newton'’s Method

Since it is impossible to have a direct method for solving the unconstrained mini-
mization problem (1.2.1) in general (such a direct method would imply that there existed
a direct method for finding roots of arbitrary polynomials), we must;_rely on iterative
methods. In the case of minimization, these usually take the form of finding some ap-
proximation to-the objective function I, computing its minimum, and then using this
point to compute a better approkimation to the minimum of the qriginal function.

For Néwton’s methods, this approximate function is based on the expansion of F' in

a Tﬁylor series:
F(z(o) +p)= F(a:(o)) + pTVF (@) + 1pTVER(z)p + R3(z(©, p), (2.2.1)

where Rg(:c(o),p) represents the higher;order terms in the serics. From now on, we will
denote the gradient of F as
g = g(z) = VF(z),
10

and the Hessian as

G=G(z)= VzF(:q).

To derive Newton’s method, we drop the remainder term in (2.2.1). If we denote F(®) =

F(z®), then "
min F(z) = min F(z© + p)
z P

~ min Q(p) (2.2.2)

= min |F©® 4 ¢%p + 1p7Gp
P

We have now approximated F' by a quadratic function. Taking the derivative of @(p) in
(2.2.2) and setting it equal to zero, we obtain the so-called Newton equations for the step

to the minimum of the quadratic function:
Gp = —g. (2.2.3)

This formula, and its e-quivalent version in (2.2.2) will be fundamental in the work to
follow. |

In its basic form, Newton’s method cannot be used, since it is not always defined
or meaningful. For example, away from the solution z*, there is no guarantee that the
matrix G will be positive definite. This means that (2.2.3) may not have a solution, or
that the minimum in (2.2.2) may not exist. Also, we are insisting that the search direction
p be a descent direction, i.e. pTg < 0, which may not be true if G is not positive definite.

Many authors have suggested ways of safe-guarding Newton’s method so that the
search-direction will be appropriately defined at each iteration.. The most successful
of these schemes involve replacing G by a related positive-definite mafrix (sce Murray
[1972]). | '

Indefiniteness is usually detected and corrected by computing and, if necessary, ad-
justing some decomposition of the matrix G. Greenstadt [1967] proposed using a spectral
decomposition and replacing negative eigenvalues with their moduli. Unfortunately, this
is a very expensive operation-—and frequently unnecessary as G is often positive delinite.
Indcfiniteness can also be detected using a Cholesky factorization (or one of its variants).
Details of this work can be found in Gill and Murray [1974a}, Bunch and Parlett [1971],
Dax and Kaniel [1977], etc. '

It is not enough to rcplace G by any positive-definite matrix G. 1f the norm of
E = G — G is large, then ||p|| will be small, and the algorithm may not converge. It is

11

thus important to be able to bound the norm of the modification matrix E.

Simply replacing G by a positive-definite matrix is not sufficient to define a method
Other problems can also occur during a minimization process. For example, it is not
always clear how to obtain a descent direction at a saddle point, that is, when g = 0
and G is not positive definite. The methods described in the previous paragraph can all
be used to compute a direction of negative curvature in this event. Such a direction is
defined by the condition |

p’Gp < 0.

An advantage of the Gill and Murray approach is its simplicity, and there is no
evidence that it is less efficient than alternative methods. Since the truncated-Newton
algorithm in the next chapter owes much to this method, some details of the algorithm
will be discussed bricfly here.

This algorithm is based on the result that a symmetric matrix G is positive definite

if and only if it ca;n be factored in the form
G = LDLT, (2.2.4)

where D is a diagonal matrix with positive diagonal entries and L is a unit lower triangular
matrix. This suggests the following technique. Attempt to compute the Cholesky
factorization (2.2.4) of G. If at any stage Dy; turns out to be negative or zero, add some
positive quantity E;; to Gy; to correct tile problem. Monitor the size of the clements of
L, and if they are “too large,” further increase the size of E;;. Now continue with the
factorization.

Exact fox:mulas for this process can be found in the Gill and Murray paper. The end

result is that we have computed the Cholesky factorization of
G+ E = LDL, (2.2.5)

where E =-diag(F;;). It can be shown that E is identically zero whenever G is
“sufficicntly positive-definite.” Sincc it would probably be necessary in any case to, com-
pute the factorization (2.2.4) to solve the Newton equations (2.2.3), the factorization
(2.2.5) can be considered as a natural by-product of the basic Newton mecthod. Using
this factorization, we obtain the modified-Newton equations for the step to the minimum

of the modified quadratic¢ function:

(G + E)p = —g. | | (2.2.6)
12

The resulting modiﬁcd-Newt(;n algorithm can be described as follows:

(2.2.6) Modified-Newton Algorithm

N1. Given z.

N2. Compute p from (2.2.3), (2.2.6), or related formulas.
N3. Find a such that F(z + ap) < F(z).

Nti. Set z + z + ap and return to step N2.

This algorithm has been left deliberately vague in order to allow for the many possibilities
discussed above for steps N2. and IN3. '
Under a variety of conditions, it can be shown that the above algorithm is globa'lly
and locally quadratically convergent. Although more general results can be found (see,
for example, Ortega and Rheinboldt [1970], pp. 421-430), the following theorem will be
adequate for our purposes. ‘
Theorem (2.2.7) Suppose that F : R* — R is twice continuously differentiable in an
open convex set D and that there is an z* in D such that g(z*) = 0 and G(z") is positive
definite. Then there is an open set S which contains z* such that for any 200 ¢ § the
Newton iterates are well-defined, remain in S and converge to . Moreover, there is a

constant 8 such that’

z®+D — 2% < Bll=® ~2"|%, k=0,1,....

2.3. Quasi-Newton Methods

The methods of this section have also been referred to in the literature as secant
methods, variable-metric methods, ete. Here, we will refer to them as quasi-Newton
methods. ' ' '

In the previous section we computed the search direction p{¥) as the minimum of a
strictly convex quadratic function or, equivalently, as the solution of the system of linéar
equations (2.2.6). Both of these methods require the Hessian matrix G, It might be

hoped thal similarly successful methods might be derived from minimizing
Q(p) = $p"B®p + pTg(¥), (2.3.1)

or equivalently, solving
BR)p = —glk) ' (2.3.2)
13

where B(*) is some suitably choscn approximation to G®),
In one dimension, there is a well-known algorithm of this type, called the secant
method. In that method,

e _ g —g® _ y®
z(k+1) o (k) s(k))

Multiplying through by s(¥) gives
BUeHD gk — (k) (2.3.3)

Considering the methods derived from (2.3.2) as extensions of the one-dimensional
secant method, it is natural to insist that (2.3.3) be satisfied in the n-dimensional casve as
well. In this context, (2.3.3) will be referred to as the quasi-Newton condition and will
be usd to define this class of methods.

In n dimensions, (2.3.3) is insufficient to uniquely specify B%+1) and further restric-
tions are required to insure that an algorithm of this type is well-defined. Although the
historical development of these methods was somewhat haphaiard, it is now known that

all the major quasi-Newton methods can be derived in the following fashion:

(2.3.4) Quasi-Newton Update

Ul. Given B®),

U2. Choose a set 6f properties P which B(*+1) must preserve. (Some
typical choices are symmetry, positive-definiteness, a particular sparsity
pattern, etc.) ‘

U3. Choose a matrix norm ||-|| as-

U4. Define B*+1) as the matrix which satisfies (2.3.3), preserves the

properties P, and which minimizes ||[B*+1) — B()||,,.

Various specific updates are then obtained by specifying the set of properties P and by
choosing a norm ||-||ar. The following few paragraphs will outline the principal updates
in use today. [For simplicity in the lollowing discussion, we will denote B = B®) B =
B+1))
A simple formula, known as Broyden’s update, is obtained by letting P be void and
by choosing ||-||a to be the Frobenius norm. Then
(v — Bs)s™
8Ts °
14

B=D+ (2'.3.5)

For solving systems of non-linear cquations, (2.3.5) is quite satisfactory, but for -
function minimization it ié inadequate. For example, because the Hessian matrix is
symmetric, it would bé desirable to insist that the update formula have the property of
hereditary symmetry; that is, that B be symmetric whenever B is.

Two choices for ||-||ar lead to the two following symmetric updates. If ||||ar is chosen
as the Euclidean 2-norm, then the symmetric rank-one formula is obtained:

(v — Bs)(y - Bs)T

B—p
B + (y — Bs)Ts

(2.3.6)

On the other hand, if ||-|| or is chosen to be the Frobenius norm, then the Powell Symmetric

Broyden (PSB) update is obtained:

——_— (y— Bs)sT+ s(y—Bs)T (y—Bs)Ts o
Bpsg = B + T3 (8T8)2 88", (23.7)

Another property of considerable significance is he.reditary positive-definiteness. If
the matrix B is guaranteed to be positive definite and bounded, then the search direction
is guaranteed to be a descent direction. If a positive-definite approximation is not chosen,
then modification schemes similar to those necessary for Newton’s method would need
to be invoked. Since G is posiﬁve semi-definite at the solution, the restriction that B be
positive definite will not asymptotically prevent superlinear convergence.

The results for positive-definite updates are not quite as simple as for symmetric
updates. Again, choosing [|-|]|s to be the 2-norm or the Frobenius norm leads to the
following two update formulas. But in this situation, the vectors y and s are no longer
arbitrary. For the updates to retain positive-definiteness, it is necessary that yTs > 0.
This property can be assured to hold by performing a sufficiently accurate line search.
With this in mind, then, the two updates are, with the 2-norm (the Davidon-Fletcher-
Powell (DFP) update):

= (y=Bs)yT+y(y—Bs)T (y—Bs)Ts .
Borp = B - 2.3.
bFP * yTs @) VY (, 38)

and with the Frobenius norm (the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update):

yyT (Bs)(Bs)T.

Burcs = B + YL —
BFGS + yTs STBS

(2.3.9)

Computationally, it has been found that (2.3.9) is the most successful update known for
gencral minimization (sec Gill, Murray, and Pitfield [1972]).
' 15

A quasi-Newton approximatibn can be initialized in a number of ways. The simplest
choice, and the only choice in the absence of addition information ai)out the Hessian,
is to set B(® = J. If it is feasible to compute some second-derivative information,
this can also be used to initialize the approximation, as can information from previous
minimization steps, if the problem being solved is one of a scquence of similar problems.
If a trust-region strategy is being used in combination with the quasi-Néwton method,
then the bounds on the variables can be used to derive an initial approximation to the
Hessian (see Powell [1970]).

To compute the search direction, it is neccssary to solve the system of linear equa-
tions (2.3.2). It may appear that this will require O(n®) operations at each iteration, but
actually, it is possible to reduce this to O(n?) operations in either of two ways.

The first observation is f,hat since all of the update formulas are of low rank, it is
simple to apply the Sherman-Morisson formula and obtain low-rank updates for H =
B! (sec Stewart [1967]). Using the inverse update, the solution of (2.3.2) would amount
to no more than multiplication by the matrix H, an 0(n2) process. However, this is
unstable. . _ ’

The second idea, and this is what is used in the best algorithms today, is to update
a lactorization of B rather than B itself. For example, if a symmetric approximation B

is stored in the form

B = LL%,

then solution of (2.3.2) involves only two back-substitutions, again an O(n?) process.
Details of how various matrix factorizations can be updated efficiently can be found in
Gill, Golub, Murray and Saunders [1974].

Under fairly mild restrictions, quasi-Newton methods can generally be shown to
exhibit global z;nd superlineér convergence. The following theorem (from Dennis and

Moré [1977], page 82) is typical and adequate for our purposes.

Theorem 2.3.1. Let FF : ®™ — R be twice continuously differentiable in an open
convex set D, and assume that g{z") == 0 and that G(z") is positive definite for some "

in D. Suppose in additioh that
1G(z) - 6= < Alz = ="ll

for some constant and for all z in D. Suppose that the algorithm (1.2.2) is implemented

16

by choosing -
B*)p(k) — _g(k) -

where B(").is obtained using a BFGS or DFP update with B(®) = I. Also, suppose that
a®) is determined using the line search formulas (1.4.4) and (1.4.5), and that

- .
> lle® ~ 2"|| < +oo.
k=0

Then {z(*)} converges superlinearly to z".}

2.4. Nonlinear Conjugate-gradient Algorithms

The (linear) conjugate-gradient algorithm of Hestcnes and Stiefel [1952] was

originally designed to solve the system of linear equations
Az =1b ' (2.4.1)

where A is a positive-definite square matrix. As indicated earlier, this is equivalent to

minimizing the quadratic form
. Q(z) = 12TAz — z"b. (2.4.2)

For clarity, we will give an outline of the algorithm here. A more complete derivation
" from another point of view can be found in section 3.2.
The solution z of (2.4.1) will be computed as a linear combination of A-conjugate

directions. That is, :
T = 2 P ' (2.4.3)
: .

where

p?Apj =0, for i57j.

Notice that the concept of A-conjugacy is equivalent to the concept of orthogonality if

the inner-product is defined as

(p1, p2) = p{Ap..

This implies that any set of A-conjugate vectors will also be linearly inde‘pendent. ,
If the representation (2.4.3) for z is substituted into (2.4.2), then minimizing Q(z)
17

becomes equivalent to solving a scquence of onc-dimensional minimization problems:

win (T een)

i {4 an) A(T o) - (T oon) 3}
= mm{ Z ai0;pTAp; — Z a,pf‘b}
= Z (mm{ 10:2pTAp; — o] b})

m1n Q=

(due to the A-conjugacy of the vectors p;). Each term in the final summation is a _
minimization problem involving only the coeflicient a;, so that the original minimization-
problem (2.4.2) has been completely decoupled into a sct of trivial one-dimensional

minimization problems.

The linear conjugate-gradient algor.ithm is quite simple to describe. Let zo be some
initial guess of the solution to (2.4.1). At each stage, compute the current residual v, =
b— Az,. If r, = 0, accept z; as the solution of {2.4.1) and terminate the iteration.
Otherwise, co.mpute a new A-conjugate direction py (using the current residual and the
previous A-conjugate direction px_;), and minimize @(z) along the line which starts
at z, and moves in the direction pi (this corresponds to minimizing one term in the

summation above).

Although the conjugate-gradient algorithm is described as an iterative method, it will
terminate after a finite number of iterations in exact arithmetic. If m is the dimension of
the systém of equations, then there can be at most m A-conjugate vectors {pi} (because
A-conjugate vectors must also be linearly independent). Since the solution z to (2.4.1) is
expressed in terms of {px}, the conjugate-gradient algorithm must converge in at most
m iterations. ‘

18

One computational form of the linear conjugate-gradient algorithm is as follows:
Given an initial guess zg.

For k=0,1,...

*

re = b— Az

B = TaTk/Th_ k-1, Bo=0
Pk = Tk + BrPr—1

T T
Q= Tk"k/PkAPk
Try1 = Tj + Q) Pk.

A uselul property of this algorithm is that the vectors {rx} are mutually orthogonal:

T,

S riri =0, if 757,

and the vectors {pi} are mutually A-conjugate:
T — . . .
piAp; =0, if iF#j.

It is a relatively simp.le broblem to adapt the linear conjugate-gradient algorithm
to solve general nonlinear problems. No'nli'near conjugate-gradient algorithms are based
on the Newton formulas (2.2.2) and (2.2.3). In this case, the underlying assumption is
that F(z) is a quadratic function, i.e. a function with a constant Hessian matrix. The
formulas for the linear conjugate-gradient algorithm are then applied to the nonlinear
function. ‘

The nonlinear conjugate-gradient algorithm computes a new search direction using
the formula

D) — gk +1) (k) () . (2.4.4)

The determination of (%) is now a univariate minimization problem. Various choices for
the scalar B%) lead to the various versions of the algorithm. The three principle formulas

(all cquivalent in the case where F° really is a quadratic function) are:

1. Fletcher-Reeves
BE = llg* D13 /llg™I3 (2.4.5)
2. Hestenes-Sticfel

T T '
BE) = yB) gle+1) 14, (k) Ty (k) (2.4.6)
19

. 3. Polak-Ribiére
, T
B = 4k g(k+1)/||g('f)l|g_ (2.4.7)

In the non-quadratic case, these formulas have quite distinct properties. For example,
(2.4.6) guarantees that y(")Tp("“) = 0 (a property of the'quadratic case) irrespective of
the accuracy of the line search or any possible non-quadratic behavior of the objective
function. Also, Powell [1977] has shown that (2.4.5) may lead to slow convergence in the
general nonlinear case when exact line searchés are performed.

In the quadratic case, the conjugate-gradient algorithm will theoretically converge
in n iterations and will have generated n linearly independent search directions p(*).
For this reason, Fletcher and Reeves [1964] suggested abandoning (2.4.4) after a cycle
of n line searches, and setting p**t1) as the steepest descent direction g+t This
strategy is known as restariing. Since then, Powell [1977] and others have suggested
other restarting strategies, and these have considerably improved the performance of
nonlinear conjugaf;e-gradient algorithms.

McCormick and Pearson [1969] have shown that, for a wide class of functions, the

restarted conjugate-gradient algorithm is n-step superlinearly convergent, i.e.

(nk+n) __ .*
ll= cil (2.4.8)

"
koo [[20R) = 2]

This result depends critically on the use of restarting. Powell [1976] has shown that
algorithms that do not contain a restarting strategy élmost always converge linearly.
The result (2.4.8) may be somewhat mislcading. In general, a successful conjugate-
gradient algorithm should converge in 2n to 3n iterations, so that asymptotic behavior
of the sort described by (2.4.8) would neveI" be observed. Thus, for practical purposes,
nonlinear conjugate-gradient algorithms can be cdnsidered to exhibit a linear rate of
converge, and the motivation for restarting is not to achieve a superlinear rate of con-

vergence.

'2.5. Adaptations and Extensions of the Traditional Methods

The three main classes of methods are each associated with a particular class of

problems to which they are ideally suited. The correspondences are as follows:

1. Newton’s method: small and modcrately sized problems where the

20

Hessian matrix is easy or cheap to compute.

2. Quasi-Newton methods: small and moderately sized problems where

the Hessian is difficult or expensive to compute.

3. Conjugate-gradient methods: large problems.

For small problems, whenever possible a user would prefer to use Newton’s method over
quasi-Newton methods, and quasi-Newton methods over conjugate-gradient methods,
because the relative efliciencies of the former methods are so much better. It should
be remembered, however, that for particular problems we cannot be assured that a
given method works better than another. There are reasons to suppose that the relative
efficiencies of the three approaches are different for large problems, when it is possible

to still apply all three methods (see Thapa [1980], Gill and Murray [1979]).

Much work has been done to extend Newton and quasi-Newton methods to larger
classes of problems, and to modify conjugate-gradient methods to give them some of the

properties of the other two classes of methods.

Newton’s method is relatively casy to extend to large problems. At each iteration,
it is necessary to solve a system of linear equations and, provided the Hessian is sparse,
this can be achieved using sparse matrix methods (see, for example, Bunch and Rose
(1976]). For most problems, however, second derivative information will not be available.
By using a finite-diflerence a'pproximat-ion to G, Newton’s method can be extended to
the casc where only first derivatives are known. In the dense case, this implies at least
n additional gradients would be pequircd. For large problems or even querate-size
problems, this is a prohibitive cost. Fortunately, if the Hessian is sparse it can be
approximated in considerably less than n gradient evaluations. Details of this work can
be found in Thapa [1980], Powell and Toint [1979].

-A second possibility is to hold G fixed for several iterations. This idea has been
explored by Brent [1973], but‘ has been found to be less effective than using quasi-Newton
methods (sce, for example, Broyden {1971]). For spccial problems this method cam work
well. When the cost of factoring the Hessian matrix dominates the cost of computing it,
or when the Hessian matrix is nearly constant, this can be the method of choice.

The extension of quasi-Newton methods to large problems is much more complex.
The updates given in section 2.3 will not in gencral give a sparse Ilessian approximation
even if the actual Hessian is sparsc. To overcome this deficiency, sparse hpdates have

21

been developed. This involves édding a sparsity condition in step U2 of the update
algorithm (2.3.4). Schubert [1970] developed a sparse update for no;llinear systems of
equations. A useful update for optimization was derived independently by Marwil [1978]
and Toint[1978]. With these updates available, sparse matrix techniques are then used

to solve the system of equations (2.3.2) for the search direction p.

Currently, it appears that sparse quasi-Newton methods are chiefly of theoretical
interest. First of all, the sparse updates are no longer of low rank (in fact, they are in
general of rank n) so that the converse of the dense case is now true and quasi-Newton
methods tak'e more algebraic operations per iteration than sparse Newton methods.
Secondly, although they can be shown to converge theoretically at a superlinear rate,
the asymptotic regime is in practice slow to set in, and these methods are usually less

efficient than sparse-Newton methods (see Thapa [1980]).

Steihaug [1980] has derived a class of sparse approximate quasi-Newton updates,
and has shown that algorithms based on them can be made to converge globally and
superlinearly. This class is obtained by computing a sparse quasi-Newton update itera-
tively using the linear co;ljugate-gradient algorithm. No practical experience has yet

been reported on these methods.

Although.both Newton and quasi-Newton methods will continue to be .improved,
they critically depend'on the assumption that the Hessian matrix is sparse. For uncon-
strained problems, this is almost always true. For constrained problems, however, the
equivalent equations that require solution involve the projection of the H.essian matrix.
Although the Hessian matrix and the matrices defining the projection may be sparse, the
projected Hessian is often dense. Except in special cases, for such pr.oblems the direct
application of Newton or quasi-Newton methods (as we have described them so far) is

unlikely to be successful.

Because conjugate-gradient methods are so frugal in their storage requirements,
attempts have been made to médify them to make them behave more like quasi-Newton
methods. This group of methods is geherally referred to as limited-memory quasi-Newton
methods. Since the standard quasi-Newton updates described in section 2.3 only involve
a few low-rank updates to an initial inatrix, it is possible to apply them to a vector
and only store the few vectors needed to define the low-rank portion of the update. The
storage available determines the number of updates used. Because the size of the problem

22

prevents the solution of the syst;em of equations (2.3.2), inverse updates are gencrally ‘
used in this application. Details of these algorithms, as well as a great many numerical
examples illustrating their performance, can be found in Gill and Murray [1979).

Another technique which has been used to improve the performance of nonlinear
conjugate-gradient algorithms is preconditioning. These algorithms will converge in one
iteration if f(z) is a quadratic function vﬁth Hessian matrix equal to the identity. The
idea behind preconditioning is to use information about the problem (obtained ecither a
priori, or dynamically as the problem is being solved), to modify the original problem
at each iteration so that it behaves more like this model problem, and hence is easier to
solve. Because preconditioning is an idea of such general usefulness, it will be discussed
in considerably more detail in 'Chapter 5.

Efforts have also been made to extend conjugate-gradient methods towards Newton'’s
method. This work comes under the category of truncated-Newton methods, and is the
main subject of this the-sis. The basic theory behind these ‘algorithms will be oullined in

the next two chapters.

23

3 Trﬁncated-Newton Methods

3.1. Introduction

In the last chapter, we \dis-cussed the three traditional classes of methods for solving
the basic unconstrained minimization problem (1.2.1). All the methods, as we saw, were
based on the solution of the Newton equations (2.2.3). Truncated-Newton methods are
no exception. In a sense, they are the converse to quasi-Newton methods. Quasi-Newton
methods compute a search direction by exactly solving an approximation to the Newton
equations, whereas truncated-Newton methods do so by approximately solving the exact
Newton cquations.

There are certain advantages to this approach. First of all, we are always dealing
with exact second-derivative information; in other words, the sub-problem we are solving
is more closely related to the actual problem we are interested in. Secondly, since we
only need an approximate solution to (2.2.3), we can use an iterative method to solve
it. Iterative methods generaliy have very low storage requirenients, and do not ekplicitly
require the Hessian matrix. - |

In the next section, we will briefly describe these methods, mention some of the
iterative methods that have been proposed for solving (2.2.3), and indicate some of the
problems.that can arise. In the final scctions, the linear conjugate-gradient and related
algorithms will be derived via the Lanczos algorithm, and it will be shown how to use
these algorithms to ove‘rcom.e the above-mentioned problems. Further aspects of this

class of algorithms will be left to later chapters.

8.2. Basic Description of the Method

Because Newton’s method is based on a Taylor series expansion near the solution
of the minimization problem (1.2.1), there is no guarantee that the scarch dircction it
computes will be as crucial far away from z". In fact, at the beginning of the solution
process, a reasonable approximation to the Newton direction may be almost as effective
as the Newton direction itself. It is only gradually, as the solution is approached, that
the Newton direction takes on more and more meaning.

This suggests using an iterative method to solve the Newton cquations.. Moreover;
it should be an iterative method with a variable tolerance, so that faf away from the

24

solution, (2.2..3) is not solved to'undue accuracy. Only when the solution is apprpachcd a
should we consider expendfng enough effort to compute something like the exact Newton
direction. As we approach the solution, the systems of equations we are required to solve
become progressively more similar. Consequently it is possible that a closer approxima-
tion to the exact solution can be determined with no increase in effort by utilizing past

information.

Sherman [1978] suggested using Successive-Over-Relaxation (SOR). This is the
simplest of a whole class of methods that have been found to be effective for solving
linear systems arising in partial differential equations. However, it is difficult to get SOR
methods to perform well on general problems. Also, they appear to be prohibitively
expensive to use in the context of truncated-Newton methods. The number of linear
sub-iterations required to achiceve superlinear convergence increases exponentially at each

non-linear iteration.

Much better suited for this application is the linear conjugate-gradient algorithm.
Although it is ideal for problems where the coefficient matrix has only a few distinct
eigenvalues, i_t is guaranteed to converge (in exact arithmetic) in at most n iterations
for any matrix. Thus, the type of exponential growth mentioned above for SOR-type
methods is impossible, at least theoretically. Also, it can be shown that the linear

conjugate-gradient algorithm is optimal in a sense to be defined later.

A requirement of both of these methods is that the coefficient matrix must be
positive-definite. Asremarked carlier, the Hessian matrix is only guarahtecd to be positive
semi-definite at the solution and mﬁy be indefinite elsewhere. Thus, whatev;zr iterative
method chosen to solve (2.2.3), it must be able to detect and cope with indcfinite systems.
This is very closely related to the situation with Newton’s method, but in this case, we
are not planning to perform a Cholesky factorization of the Hessian matrix, making it
difficult to modify it dircctly. The next two sections will describe how to circumvent this
problem in the case of the lincar conjugate-gradient algorithm. Because the SOR-based
methods are prohibitively expensive to use, even in ideal circumstances, they will not be

considered further.

Paige and Saunders [1975] have developed two conjugate-gradient-like algorithms for
dealing with symmetric indcfinite systems of equations. The first of these, SYMMLQ, is
identical to the traditional conjugate-gradient method in the positive—dcﬁﬁite case, and

25

is not of much interest in this context. The second, MINRES, is based on minimizing '
the norm of the residual at each iteration. It produces different iterates than the CG

method, and has many properties of value to us here. It will be discussed in section 3.7.

Finally, we give here a description of a truncated-Newton method in algorithmic
form. The details of the methods used to iteratively solve the Newton equations and to

precondition the algorithm will be given later.

(3.2.1) Truncated-Newton Algorithm

TN1. Given z(®, some approximation to z".

TN2. If z(%) is a sufficiently accurate approximation to the minimum of

F, terminate the algorithm.

TN3. Approximately solve the Newton equations (2.2.3) using some
iterative algorithm with preconditioning M®), M) is chosen with infor-
mation from some non-linear algorithm or from previous iterations (sce
Chapter 5).

TN4. Using the search direction computed in step TIN3, use the line
search algorithm (1.4.3) to compute a new point 2+ Go to step TNZ2.

8.3 The Linear Conjugate-Gradient Algorithm

A well known technique for i;he solution of large systems of linear equations is
the linear conjugate-gradient method of Hestenes and Stiefel [1952]. This mcthod can
be directly applied to the Newton equations (2.2.3). The linear (;pnjugatc-gradicnt
algorithm is particularly appropriate when matrix-vector produvcts of the form G(®)y can
be computed even though the matrix G) or its factorization cannot. The conjugate-
gradient algorithm is usually der.ived as a direct method, in the sense that, theoretically,
the solution is found alter n iterations or less. However, in practice the algorithm bchaves
more like an iterative method since it computes a sequence of improving cslimates and
has the potential of converging in much more than n iterations. The finite termination
properties of the conjugate-gradient algorithm are based on orthogonality relations which
are not valid in finite precision arithmetic. It is possible to perform extra computatidns
in order to recover finite termination, but this is expensive both in terms of storage and
in terms of operation counts. For large problems, this is impractical.v Recent work of

26

Parlett [1980] and others has attempted to overcome this difficulty through the use of
selective reorthogonalization. -

Although most of the literature on this algorithm refers to the solution of the
equation Az = b, it is felt that using this notation here would lead to unnecessary
confusion. In order to be consistent with the other parts of this thesis, we shall solve the
system of linear equations

Gp =1, (3.3.1)

where G is an n X n positive-definite matrix. We shall use {p,} to denote members of
an iterative sequence intended to solve (3.3.1). It will be assumed that all the operations
are performed in exact arithmetic.

The conjugate-gradient algorithm can be derived by finding iterates that minimize
the quadratic function Q(p) = 1pTGp — bTp.

Let pg be the g-th approximation to the minimum of Q(z) and let vy,s,..., Vg
be ¢ linearly independent vectors that span a subspace V,. The minimum of Q(z) may
be computed by minimizing Q(z) over an expanding sequence of linear manifolds that
eventually contains ®". If V, denotes the matrix with columns vy, vs,... , Vg then the
minimum of @(z) over the manifold p, + Vg is given by the solution of the i)roblem

i V).
min Qpg + Vow)

If pg+V,w is substituted into the quadratic function we find that the optimal w minimizes
the function ' -
%wTVZ‘Gqu + 'wTVZ'rq,

where 7, = V@Q(p;) = Gpy — b. This quadratic function has a minimum at the point

—(VZ'GVq)“lVZ'rq and consequently, the required minimum over the subspace‘is given
by l
Pgy1 = Pg — Vq(VZ'GVq)_IVZ‘Tq'
Note that rg44, the gradient of Q(p) at pgy1, is orthogonal to the columns of V, since
Vfrq+l = VZ‘(GP‘I'\LI —b)

= —ViGV(VIGVy \Vir +Vir,

= 0.
The definition of p,11 4s a minimum over the manifold pq + Vg has special significance

97

if each previous iterate p; is oblained as the minimum over pj—1 + V;_1. In this case
rq will be orthogonal to all the columns of V, except the last, and the minimum on the

subspace V, is given by
Par1 = Py — Vo(VIGV) 'V ir,
= p, + Vo(VIGV,) e, (3.3.2)

where 7 = —rT:

aVq and eg is the g-th column of the identity matrix.

‘Suppose that the columns of Vg are defined by the Lanczos recurrence relations

(Lanczos [1950]). In this case we start with some vector v, v{v, = 1, and form
Bis1vj41 = Guj — aju; — Bjvi—1, aj = v Gvj, (3.3.3)
where v = 0, and B;41 {841 > 0) is chosen so that [|vj41]l2 = 1. After the g-th step
GVy = VT, + Bys1vgr1€h | (33.4)

where

ay P
(ﬂz az P \

B3 a3

) .. ﬂq
\ ﬂq Qg }
ViVy=1, and Vivg, =0.

The process will be terminated at the first zero 8, so that in general we assume that j;

is nonzero for § = 1,2,...,q. In this case VZ'G’V., = T, and (3.3.2) becomes
Pgt1 =Pg+ TVaTq' e
=Py +7V(Lg) 7' DT LT e,
where L, and Dy are the Cholesky factors of Ty. Since L, has unit diagonal elements,

-1, _
Li e, =e,. Consequently,

Ty Ty | _
Par1 =P+ 7Vall7) " eg | (3.3.5)
q .
= Pq + gy,

28

where 0, = -—rz'vq/dq and u, is given by the g-th column of the matrix
Ty—1
U, =Vo(Ly)™".

Paige and Saunders [1975] show that the columns of U; can be computed from the
recurrence relations

Uy = vy, U = vg — laug_,

where [, is the (q — 1)-th sub-diagonal element of the lower bi-diagonal matrix L,.
When the vector v; used to start the Lanczos process is chosen as a multiple of the.
right-hand-side vector b and when z; is zero, this algorithm is mathematically equivalent
to the Hestenes-Stiefel conjugate-gradient algorithm. The derivation here emphasizes the
fact that a whole class of conjugate-direction methods can be generated from different

choices for v;.

It is well known that in general, rounding error seriously impairs the performance of
Lanczos tri-diagonalization by causing a loss of orthogonality in the vectors {v;}. This
implies that the matrices VqTGVq will no longer be tri-diagonal and the solution Po+1.
over the subspace V, will be correspondingly inaccurate. The effects of this error are
noticably reduced if the starting vector v, is taken to be a multiple of 4. The reason for
this is that, in the Paige-Saunders algorithm, each Pg is algebraically of the form V,y,
where Ty = Bie;. From (3.3.4) we have

GVyy =V, T y+ ﬂq+1vq+1efy

to working precision, and consequently,

Gp, = B1Vyey fﬂq+1”q+1ez‘y
=b+ Ber1Veprery. (3.3.6)

This expressibn does not depend at all upon the orthogonality of the Lanczos vectors
and indicates that p, will be the solution of a prdblem with right-hand side that differs
from the true b by ,Bq+lvq+leqry, a quantity that will ultimately be sufliciently small.
Unfortu'nately, a relationship analogous to (3.3.6) docs not hold for arbitrary v;.

In the light of these remarks, we shall always use the term Lanczos iteration to refer
to the recurrence relations (3.3.3) with v; defined as a multiple of 5. Although this is
mathematically equivalent to the linear conjugate-gradicent algorithm of Hestenes and

29

Steifel, this derivation allows us to modify the algorithm in the case when the Hessian

matrix G is not positive definite.

3.4. Indefinite Systems

When the matrix G is indefinite, Paige and Saunders note that the conjugate-
gradient ﬁlethod is unstable and propose a modified Lanczos method based on the LQ
factorization of T, rather than the Cholesky factorization. In the context of minimization,
however, even the exact solution of an indefinite system is of little practical value since
the resulting direction of search is likely to be a non-descent dircction. As in the case of
modified-Newton methods for the factorization of G(¥), we can make better use of the
solution of a ncighboring positive-definite system.

The proposed method is based on the following theorem. We shall assume that
the Lanczos iteration, when applied with exact arithmetic to a symmetric matrix G,
terminates at iteration s (s < n), i.e., B4+1 vanishes. As in the last section, we shall use
T, and V; to denote the .q Xq and n X ¢q matrices associated with the g-th stage of the

Lanczos iteration.

Theorem (3.4.1) Let E, = diag(ej1,ez2,...,€ss) be a diagonal matrix with non-
negative entries and let E, denote the ¢ X ¢ principal sub-matrix of E,. If the matrix

T, + E, is positive definite with Cholesky factors Ly and Dy, the iteration
i)l = 0, i’q+l = i)q + U'qVqu_Teq,

— T, s
where 0, = —vqrq/dq, solves the linear system,

(G+V,EVDp=hb.

Proof Let & denote the matrix G + V,E,VT. Using the orthogonality of the Lanczos
vectors '
TAY o VT
VGV =V GV, + E,
=T+ E,

= L,D,LI. : (3.4.2)

We can apply the idecas of Section 3.3 to gencrate the sequence {f)j} defincd by the
30

recurrence rclations

7q i) -b

II
Q,

ey 1y T (3.4.3)
Pgy1 = Dg— Vq(VqG'V)~ Vate
that will solve the linear system éﬁ = b.
Substituting the expression (3.4.2) for VZ'éVq in (3.3.5) and using a similar analysis -

to that used to obtain (7) we find
s A ~T
Pg+1 = Py + O'qVqu €q

where 0, = —v 'rq/d The scalar v ¢ is computed from r, using

vty =va(Gp, — b)
= v(GP, — b) + vIV,E VTp,
= vT'r + equﬁ’q'

Since p is in the span of {vy,..., vg—1}, and V, is an orthogonal matrix, the second term

on the right-hand side vanishes. ThlS proves the thcorem. J

Corollary (3.4.4) The vector p obtained from the recurrence relations defined in

Theorem 1 satisfies the positive-definite system
(G+VEVT)p =,
where ||[VEVT|| = ||E|l.

Proof If s is equal to n the corollary follows trivially. If s < = then V will be
the matrix (V, V), where V is the orthogonal complement of V,. The remaining n — s
diagonal elements of E are arbitrary and may be chosen so that A + VEV T is positive

definite. 1§

The meodified Lanczos method may be applied directly to the Newton equations
(2.2.3). When exact arithmetic is used and the Lanczos iteration is continued until Bg+1
is zero (i.e., g steps are computed), the nonlinear algorithm is a modificd Newton method

with a positive-definite approximate Hessian
G® 4 o),

where 2(F) is the matrix VqEqVZ'. Note that, unlike the modification p'roduced by the
31

direct application of the modiﬁcd Cholesky factorization, 2(¥) is not a diagonal matrix. o

The orthogonality of the Lanczos vectors implies that
IVeE VIl = IE,]I.

Consequently, when the diagonal modification to T is small, the modification to G
will be small also. .

The truncated Newton method of Dembo and Steihaug [1980] “solves” (2.2.3) by
performing a lirited number of iterations of the linear conjugate-gradient method.
The iterations are terminated (“truncated”) before the system is solved exactly. The
final iterate of the truncated scquence is then taken as an approximate solution of
(2.2.3). If a single linear iteration is used, p*) will be the steepest-descent direction
—g(®); if the sequence is not truncated, p(*) will be the solution of (2.2.3). Thus, the
algorithm computes a vector that interpolates between the steepest-descent direction and
the Newton direction. _

Dembo and Steihaug showed that, if G(¥) is positive definite and the initial iterate
of the linear conjugate-gradient scheme is the steepest-descent direction —g(¥), all suc-
ceeding linear iterates will be directions of descent with respect to F(z). . -

When G is not guaranteed to be positive definite, p(¥) may not be a descent
direction. We propose that the modifred Lanczos algorithm be used to compute the
direction of search. The following theorem indicates that the direction of search obtained
by terminating the modified Lanczos scheme will always be a direction of descent,

irrespective of the definiteness of G(¥),

Theorem (3.4.5) Let {p,} denote the sequence of iterates computed by the modified
Lanczos algorithm with pg equal to the zero vector, and assume that g(® 7 0. Then

g(")q-'pq < 0 for all ¢ > 0.

Proof When pg is zero, py (¢ > 0) is the solution of the minimization problem

min 1pT(GH + 2 + g(k)Tp
pE'V,_l

where 02() is some modification to G chosen so that G® + () s positive definite. -
Thus . ‘
-1
pq — _Vq—l(VZ‘—l(G(k) + n(k))Vq_l) Vq_lg(k).
32

Direct pre-multiplication by g(")Tgives
T T —1
0" pg = —g®V L (VIL(GW +2®)V)TV W <o,

since by construction, VI_(G®) + NV __, is positive definite. §

3.5. Coinputing a Modified Factorizaton of a Tridiagonal Matrix

At the first stage of the Lanczos process we nced to find the Cholesky factorization
of the 1 X 1 “matrix” given By
T1 = (ay).

If A is not positive deflinite, a; may be negatfve or zero, and it is replaced by
a; = max {ay, 8},

where 6 is a pre-assigned small positive constant. This is an allowable “diagonal”

modification to T since

o = oy + py,

where p; = max {0,6 — a;}. The introduction of the constant & is necessary to bound
the factorization away from singularity. Usually § will be a multiple of the relative

machine precision.

At the second stage of the algofithm we need the modified factorization of the matrix

ar P
() ' (3.5.1)
Bz a2 . .

Let the Cholesky factors of this matrix be written as

10 d 0 1 U
(12 1)(0 dz)(o‘ 1)
Stréightforward application of the Cholesky factorization to (3.5.1) gives dy = @, dg =
max{6, 4}, and l = B2/a,, where ¢ = a, — f2/a,. If ¢ is negative, the matrix is
indefinite and a diagonal correction must be made in order to ensure sufficient positive
definiteness. The smallest modification to the (2,2) element of (3.5.1) that maintains
positive definiteness results from redefining dg as §. This modification -adds the quantity

—¢ + 6 to the second diagonal element of (3.5.1). Unfortunately, this algorithm has a
33

scrious disadvantage, as the folléwing example will illustrate.

Consider the Cholesky factorization of the matrix

5 1
. T=() . (3.5.2)
11

In this case, ¢ is the large negative quantity 1 —1/6 and the diagonal dy is set to §. This

gives the factorization

(GGG)

Note that, although we have made the smallest allowable modification to d2, we have
produced a very large diagonal correction and the modified matrix is in no way “close”
to the original. This has occurred because the lower-triangular element has been allowed
to become large.

This problem does not arise when using the Gill-Murray modified Cholesky fac-
torization (Gill and Murray {1974a]) since the diagonals are adjusted so as to givé lower-
triangular elements that are bounded in magnitude by an a priori bound. llowever, in
order to compute this bound it is necessary to determine an accurate bound on ||G||
which may not be possible or convenient if G is large and not stored explicitly.

An alternative to the Gill'-Murray factorization which is, nevertheless, similar in

principle requires the computation of the factorization

G o)+)=)G o))
+ =),
B2 aq 0 po b 1 0 ds 0 1

so that the quantity o; + p2 is minimized. (We use a different notation for the elements
of the diagonal modification and the diagonal factor because pg and d2 may be modified

again at the next stage of the factorization.) Thus if we define the quantity
7 = max {¢,6},

we need to solve the problem
min o1+ p2
subject to T =y + pp — B3/(&, + 0,)

0120, p22>0.
34

If¢26,00=p2=0. Otherwise 7 = & and we compute,
01 =|B2] —a;, and p;=106—o0g+|Be, (3.5.3)

which are the optimal values of 01 and p; ignoring the non-negativity constraints. If

either correction is negative we use
0;,=0 and py,=6—a,+Bi/a;,=6-¢, (3.5.4)

or

o, = P5/(ag—6)—a;, and p,=0, (3.5.5)

choosing the sensible pair that minimizes oy + p2. Since ¢ < §, at least (3.5.4) must be

feasible.

When this modified Cholesky factorization is used on the matrix (3.5.2), the factors

GG)=

which is suitably “close” to the original matrix.

are given by

The first column of the Cholesky factorization is unaffected by subsequent iterations

and consequently I3 is the required sub-diagonal element of L with
€11 = p1 +01.

The next stage of the reduction involves the matrix

(512 ,33)
Bz o3 ,

where @2 = a2 + p and by construction, as > §. This matrix is identical in structure
to (3.5.1) and so the process can be continued to find the modified factorization of Te,
Ts, ... ete.

Two advantages of the Gill-Murray modified Cholesky factorization are that (a)
it is poésible to bound the diagonal modification, and (b) it is possible to compute a
direction of ﬁegative curvature when g¥) = 0 and G(® is indefinite (see scction 2.2).
The implementation of the algorithm as described in their work requires accurate a priori
bounds on the clements of the matrix G(¥), In our casc, the tridiagonal matrix T, is being

35

factored as it is generated, and the matrix G*) may not be available. It is still possible,
though, to bound the norm of the modification and to compute direétions of negative
curvature when the gradient is zero.

Theorem (3.5.6) Let T be a symmetric tridiagonal matrix, with principal 7 X ¢

submatrix T;. Assume that a modified Cholesky factorization
T; + E; = L;D;LT

is computed using the algorithm described above. If

%= r}lg,({lajl}

G = rjnsag_({lﬂjl},

where {;} and {B;} are the diagonal and subdiagonal elements of 7', respectively, and

if § is a positive tolerance for zero, then
IE:llz < 46 + 7 +)

Proof (by induction) Initially, Ty = (a1). If @y > 6, then E; = (0); otherwise,
E; = (6§ — a;). In cither case, ||Eq]] < 6+]aj|=1:[6+ 71 +¢1]. (The norm used is the
2-norm.)

Assume that ||E,[| < i+ v+ If oy = piy1 = 0, then no modiﬁcatioﬁ is
necessary, ||Evr1]| = |||, and hence [|Erpsl] < (£ 4+ 1)[6 + Y41 + 6]

Otherwise, 7 = 6 and we compute o; and p;4; from (3.5.3), (3.5.4), or (3.5.5). When
(3.5.3) is used, '

il < Nl + 6 + %1 + Git1s

and the result follows. If (3.5.3) is infeasible, we use either
O+ pir1 = Pryi /i — Gy =9
or
— /2 /= = e
0; + pit1 = Biyy /G — & =0,
where a1 = o4 — 6. There are three cases:
(i) max{a;,&i+1} < |Bit1]: In this case, |Bit1] — & and |Bigi1| — @iy

are both positive, so that (3.5.3) would have been feasible.

36

i) |Bixa] < ay First, ¥ < |Bix1] — @s41. Also, because (3.5.4) is
feasible, we can conclude that ¢ > 0.
(iii) |Bi+1] < @441: First, 0 < |Biy1| — 6. Because & > 0 (by
construction) and &5 > 0 (by assumption), then § = (&;/&;+1)¢ > 0.
We are trying to minimize o; + p;+1 = min{0, 1}, subject to the feasibility constraints.
From the case-by-case analysis above, we.can conclude that min{0,v} < max{|8;+1|—

&;, |Bi+1] — @41}, and hence
NEirsll < [|El + 6 + vigr + Gt

This implies that ||E; || < (5 + 1)[6 + vi+1 + ¢it1], and the result is proved.ll

In the above discussion, it was assumed that the modifications to the diagonal
elements of the 2 X 2 matrices were both positive. When factoring a tridiagonal matrix,
a diagonal element might be modified twice, and in this case it might be pbssible to allow
one of these modifications to be negative. This would not affect the a priori bound on E

derived above. For this reason, we have not examined this possibility further.

3.6. Computing a Direction of Negative Curvature

The vprocedure for the computation of the direction of search will break down if
llgll is zero. If G is positive definite, then a solution has been determined. It remains,
however, to confirm that G is indeed positive definite. Moreover, if G is indelinite, further
progress can be made by moving along a direction of negative curvature.

Suppose that ||g|| is small. We wish to determine if G is indefinite, and if so, compute
p such that p”Gp < 0. To do this, we choose v; randomly, ||v1]| = 1, as the initial vector

for the Lanczos process. The Lanczos iteration
ViGV; =Tj, . T;=L;D;L]

is performed as long as Tj is positive semi-definite. (Parlett [1980] reports that good
approximations to the extreme eigenvalues can l;c obtained in 2n?% iterations; if G is
indeﬁ“nite, one of the extreme eigenvalues will be negative.) Note that, because we are
trying to determine if G is indefinite, the tolerance é§ should be set to zero. . |

Assume that Ty, ¢ < 2n-';', is the last positive semi-definite matrix that occurs. Also,

37

suppose for the moment that Bg41 is non-zero. Then Tyy; = Lq+ID‘q+ng‘+v where

L, 0 _— D, b
L — q d D — q Yg+1
g-+1 (0 1) an q+1 (bzv+1 gr1 ’

where bZ‘_H_ = (0,...,0,B441). Note that only the last diagonal element of Dy can be
zero. In order to determine a direction of negative curvature, we perform an orthogonal

spectral decomposition of (ﬁ:,i:; ﬁjj,‘)3

(d, ﬂq+1) _ Q()\q 0)QT 0= ((111 1112) QTQ =1
Bg+1 qt1 0 —hgt1 ’ g21 q22)’ ’

with Ag4+1 > 0. This is possible because Tg41 has exactly one negative eigenvalue. Let

P = Ugq41, Where

~T ~ 10
Ugt1 = (“l |- I uq+l) = Vq+1Lq+1’ Lgy1 = Lq+1(0 Q)’
Ug+1 = Q12Uq + G22¥q41- This is nearly the same as the formula used to compute

the linear conjugate-gradient search direction, so that no additional vector storage
is required to implement this idea. Then, if eZ‘H = (0,...,0,1) and 1~)q+1 =
diag{dy, ..., dg—1,\g» —Ag+1},

p’Gp = eZ'Jr 1Uf+1GUq+1eq+1

= eg‘—i-li‘q—ll‘VZ‘+IGV¢I+1I:;f‘leQ+l

= eZ‘+ 1Lq—-:1[—’:q+lbq+ li:+ﬂi;-:‘leq+l

= —Xg+1 < 0.
Thus pis a direction of negative curvature. It should be noted that, since the Lanczos
algorithm seeks out the most negative eigenvalue of G, the direction p computed in this
way ought to be an excellent direction of negative curvature, i.e. p’Gp/||p|| will be close
to its minimum value.

Suppose'now that B,41 = 0. If T, is positive definite, and provided our initial
random vector docs not lie wholly in the space spahncd by the eigenvectors corresponding
to positive eigenvalues, then G is positive definite and we are at a local minimum of the
objectiv-e function F. However, if the initial vector does lie in the positive eigenspace, no
such conclusion can be made. To guarantec the indefiniteness of G, we require a more
complex procedure.

We will carry out the Lanczos procedure using a series of initial vectors. The first,

38

v}, will be chosen randomly as above. If the Lanczos algorithm terminates at iteration
g, with ¢ < n, and T, is positive definite, then we choose another' initial vector v?
orthogonal to {v},G'v}, . } and run the Lanczos algorithm again. We continue in this
way until either we encounter an indefinite T, or until {v}, Gvl,...,v%,Gv%,.. } spans
R". In the latter case, we can assert that G is positive definite.

This procedure is impractical for large problems. In the worst case, it will take a full
n steps to determine whether G is indefinite. Suppose that G has one negative eigenvalue.
Also, let {""1} be an orthogonal set of eigenvectors for G, with v} corresponding to the
negative eigenvalue. Then tHe Lanczos algorithm will converge in one iteration for each
v%, and all n starting vectors will have to be used. When = is large, this is unsuitﬁbly
expensive.

If G is indefinite then, dyue to the influence of rounding errors, it is higl.lly unlikely
that the Lanczos algorithm will terminate without discovering the indefiniteness in G.
Even if the initial vector v, contains no component in the negative eigenspace, any
rounding error would almost certainly introduce one. This would then allow a negative
eigenvalue to develop in Ty as desired. Thus, the worst case behavior described abov-e is
unlikely to occur in practice. This justifies using a single starting vector when seeking a
direction of negative curvature.

If T, is only positive semi-definite, i.e. dy=0, then it is not possible to determine
a direction of negative curvature for the quadratic approximation. If we set p = wu,,
the g-th linear conjugate-gradient search direction, then p’Gp = 0 using an argument
similar to that above. Such a p may be a direction of negative curvature for F, even
though it is not for the quadratic subproblem. This would depend on. the higher-order

derivatives of F'.

3.7. Minimum Residual Methods

As was scen above, the preconditioned Lanczos method gencrates a tridiagonal
matrix as a projection of the coefficiént matrix in (3.3.1). In the previous sections, we
used this tridiagonal matrix to minimize a quadratic function related to our original
system of equations. This tridiagonal matrix can also be used to implicitly solve the
normal equations |

GTGp = G™b.
39

This idea is the basis of the minimum residual algorithm MINRES of Paige and Saunders
[1975).

When ‘'minimizing the quadratic function, we fo;'med an LDLT factorization of the
tridiagonal matrix T. In this context, it is more appropriate to factor T, (or, to be more
exact, Ty + E,) as -
To=LQy QiQu=1, . (310)
with L, lower triangular. The bar is used to indicate that L, differs from the ¢ X ¢
leading part of Lg4; in the (g, g) element only. The details of this factorization can be
found in the Paige and Saunders paper. . |

If we carry out the orthogonal factorization, we obtain that
- +T
VIG®V, =T?% + B2, 1e.e] = L,L, + B2 1eqe; = LyLy, (3.7.2)

where L, is the leading q by ¢ part of Lg+1. If we project the normal eqﬁations onto the

space spanned by the columns of the matrix V;, we obtain
VIG*,2, =VIGh, py=V,z,

The right-hand side of this system can be written as

VIGh = 1VIGv, = BiTees.
Using (3.7.1) and (3.7.2), we obtain the following system of equations for zg:
LoLTz, = B1L,Qqes. o (3.13).
But we can write
L,=L,D,, D,=diag(1,1,...,¢g),
and while L, is nonsingular, (3.7.3) gives

Lzg = P1DyQqer = (11,...,7)T = t,,

_ (3.7.4)
T = prer, 1= Pis1syec8ioaCi, - 1=2,...,4,

so there is minimal error in computing LZ'uq. Clearly z, cannot be found until the

algorithm is completed, but it is not really needed; instead we form

Ny =[ny,..0,mg) =V I]T

40

column by column, and then
gl = V2, = VLT L2y = Nyt,,

where ¢, is developed in (3.7.2), and the superscript ® shows that this is the vector which
gives the Ir;inimum residual. It can be seen that this formula does not require the storage
of the matrix N; all that is needed is its final column.

Because we will wish té terminate this algorithm based oﬁ the norm of the residual,
it is important t;,hat this quantity can be computed with little effort and without requiring

excess storage. It follows from the results of Paige and Saunders that

I ¥llae = |B18182--84],

which satisfies our requirements, and which shows clearly how the residual norm decreases
each step. Here, ||-]|pr refers to the M-norm of a vector, where M is the preconditioning

matrix for the Lanczos algorithm (see section 3.8 below).

3.8. Preconditioning the Lanczos Algorithm

When exact arithmetic is used throughout, the number of iterations required to solve
a linear system Gp = b using the conjugate-gradient method or the MINRES algorithm
is equal to the number of distinct eigen;'alues of G (see, for example, Luenberger [1973],
pp. 176-178). Therefore, the performance should be significantly improved when the
original system is replaced by an equivalent system in which the mz;trix has many unit
eigenvalues. The purpose of preconditioning is to construct a transformation to have this
effect.

Let M be a symmetric, positive-definite matrix. The solution of Gp = b can be

found by solving the system
M~ iGM 3y = M},

and forming p = M~—%y. Let R denote the matrix M~iGM~%; we have M—*RM?} =
M~-1G and therefore R is similar to M~!G and has the same eigenvalues. The idea is
to choose M so that as many of the eigenvalues of M~1G as possible are close to unity.
This is roughly equivalent to choosing M so that the condition number of M~1G is as
small as possible; the matrix M is known as the preconditioning matrix. '

41

Given a preconditioning matrix M , we can apply the Lanczos algorithm to the .
transformed system without forming R and without the need to ﬁn;i the square root
of the matrix M. In practice, M will often not be explicitly available. It will only
be available as an operator, and all that will be possible is to solve systems of linear
equations with coefficient matrix M.

The recurrence relations analogous to (3.3.3) for the transformed system are
Bi+1vi+1 = M1Gv; — ajv; — Bivi_1, o = v]G,

where vy and vy are chosen as before. Notice, however, that for the preconditioned

algorithm the vectors v; are normalized so that |jv;||ss = 1. After the g-th step we have
GV, = MV, Ty + Bor1 Mgy sel.
Note that the matrices M, T,, and V; satisfy the relations
ViMV,=1I, and VIGV,=T,

This preconditioned Lanczos algorithm allows us to solve the system of equations (3.3.1)
in the same way as in sections 3.3 or 3.7. The crucial fact in the derivation in those
sections is that the matrix V; transforms the matrix G to tridiagonal form. This is still
true for the preconditioned algorithm. V

We shall discuss the choice of preconditioning matrix in chapter 5.. We shall be
particularly interested in using a matrix M that is an approximation t(_) the inverse of G.
This matrix can be obtained using information from a nonlinear conjugate-gradient-type

method together with information from previous linear subiterations.

42

4 Terminating the Linear Algorithm

4.1, Introduction

In order to fully define the simplest form of a truncated-Newton algorithm, all that
remains is to state how to terminate the linear algorithm. The fundamental results in
this area were proved by Dembo, Eisenstadt and Steihaug [1980]. They provide very
useful guidelines for developing practical convergence criteria.

In section 4.2, the results of Dembo et al. will be described from the point of
view of function minimization (they were originally stated in the context of solving
systems of non-linear equations). Because these results are stated in terms of the 2-norm
of the residual in (2.2.3), they are not directly applicable or even natural when used
in conjunction with methods based on minimizing a quadratic function. More uscful
extensions of their results will be proved in section 4.3. In section 4.4, practical stopping

criteria for the linear algorithm will be discussed. Finally, in section 4.5, truncated-

Newton algorithms based on a trust-region approach will be derived.

4.2. Termination Based on ||r(*)||,

Actually, the results in this section involve the relative residual
B lg®, (4.2.1)

where

The relative residual in (4.2.1) is used because it is scale free, i.e. multiplying the objective
function F' by a constant does not affect its value. Note that since ||g*¥)|| — 0 and
2™} — o0, then ||p® — (—g®)|| — 0. Since —g® would be an exceedingly poor
approximation to p(*) to use within the a]gorithm, clearly it is necessary to scale in the
manner described. _ V
. All the results of this section will be of the following form: the linear iteration will
be truncated if the current estimate pg") of the search direction guarantees that
”;—((2—“ < ok, k=0,1,..., ' (4.2.2)
43

where {¢x} is some “forcing seqdence”. The algorithm is then completely defined given .

that the sequence {¢} has been specified.

Before proceeding with the main result, we require the following definition.

Definition (4.2.3) G(z) is Holder continuous at z” if there exist constants p € (0, 1]
and L so that for all y in a neighborhood of z* -

IG(y) - G(z")I| < Lily —="|IP.

We are now in a position to state

Theorem (4.2.4) Assume that F : R® — R is a real-valued function such that
1) There exists a local minimum z* of F.
2) F is twice continuously differentiable in a neighborhood of z*
3) G(z") is nonsingular (and hence positive definite)
and that the truncated-Newton sequence {z(¥)} converges to z*. Then
i) if limg— 00 ¢x = O, the convergence rate of {r(¥} and {z(®} will be
superlinear.
In addition, if G(z) is Holder continuous at z* with exponent p € (0,1], then for some
c>0, '
ii) if ¢r < ¢|lg®)||P, the sequence {z(F)} converges with Q-order (1 + p);
and
iii) if {¢x} converges to 0 with R-order (1 + p), then {2(¥)} converges to
z" with R-order (1 + p).i

The proofs of these results can be found in Dembo et al. [1980].

4.3. Alternative Assessment Criteria

In order to approximately solve the system of linear equations (2.2.3), some variant of
the conjugate-gradient algorithm is used. Although Theorem (4.2.4) is uscful in indicating
when to stop the conjugate-gradient iteration, it is based on ||r4|| a quantity which does
not decrease monotonically as the algorithm progresses (the subscript g refers to the
linear conjug;a.te-gradient iteration). The algorithm is based upon the minimization of
the quadratic function

Q(p) = 1" Gp +p"g.
44

It would be preferable to stop the é.lgorithm based on the value of this quadratic function,
since it is a closer measure of how the conjugate-gradient algorithm is converging. Ideally,

we would like to measure convergence in terms of the quantity

llp — B|
llgll

where 7 is the minimizing point for the quadratic function Q(p). Since this is unavailable

during the computation, this is not possible. However, a simple substitution shows that

p—7lle _ lQ(p) —Q(?)|
llgllg-: QP [

In this section we will show how to use this relation to derive a practical convergence

criterion. First of all, two lemmas arc required.

Lemma (4.3.1) If G is symmetric and positive-definite then
y" Gy < |IGlly" Gy.

Proof We can assume, without loss of generality, that G = diag{)\;}. Then,

yTGhy = yir?
< D ¥PAmax
= Amax D_ ¥o\i'
= ||Glly" Gy-n

Lemma (4.3.2) IfGis éymmetric and positive-definite then
y"Gy < |IG7y" GPy.n

The proof of this lemma is almost identical to the previous proof and is therefore omitted.

We now move on to our main result.

Theorem (4.3.3) Suppose Q(p) = 1pT Gp+ pTg, where G is symmetric and positive-

definite. Let p denote the point that minimizes Q. Then, for any p,

G +4l® < 20IGI - (Qr) - Q(F)
(Q(r) - Q7)) < G|l -IGp + gl

Proof We will prove here the first result, which relies only on Lemma (4.3.1) above.

45

The proof of the second result (Which relies'on Lemma (4.3.2)) is almost identical.

IGp + glI* = (Gp + 9)T(Gp + g)

Gp — Gp)"(Gp - Gp)

= (p—P)G*(p—P)

< IGll(p"Gp - 27" Gp + PT GP)
= [|G((p"Gp + 2p"g) — 7" g)
= 2||G||(Q(p) — Q(P))-N

=
=
(

The significance of this result is that we can now rewrite Theorem (4.2.4) with ||r,||
replaced by (Q(p,) — @(7))!/2. One major advantage of using this quantity is that it
decreases monotonically during the linear conjugate-gradient iteration.

Clearly, since 7 is unknown during an iteration, we cannot make direct use of this
quantity within an algorithm. We require a convergence test which only involves com-
putable quantities, and at the same time maintains a superlinear convergence rate in the
outer algorithm. To this end, we will now examine the behavior of the linear conjugate-
gradient algorithrﬁ more closely. Because the performance of the outer algorithm is now
of interest, the superscript (¥ is now included in the formulas.

Hestenes [1980] has shown (p. 44) that

Q¥(pgr1) -~ QW) < K[Q(")(pq) - Q""(ﬁ)],

where K = (Mr:_',:—)z and m, M are the extreme eigenvalues of G*), Hence,

LK (@9(p011) - @9(7)) < @¥(p,) - @V (py11)

< @W(p,) — @W(p).
From this we conclude that it is possible to achieve superlinear convergence by insuring

that _ i s
[Q""(pq)—Q("’(pq+1)] = oflg®])). (13.4)

The significancc of this result is that all the quantities involved can be computed during
the course of the linear conjugate-gradient iterat.ion. Thus, this is a practical way of
being able to guarantee superlinear convergence. It is also attractive because it is based
on the successive values of the quadratic function minimized by the linear CG algorithm,
and not on successive values of the residual. Unfortunately, like the norm of the residual,'
it does not decrcase monotonically during the iteration. |

46

When using the linecar conjﬁgate—gradicnt algorithm to solve Gp = —g, we plearly -
have that ||po|| = {|—gl| and that ||pco|| = [|-G~g]| < |IG~!|| - llg]|- This implies that

we can rescale (4.3.4) and obtain the following two equivalent convergence tests:

: [@®(2g) = @B (pg+1)]? = o(|Q™M(p1)I?) | (4.3.5)

and
109(pe) ~ @W(pgs)] = o(1QW(pgaa)l?). (4.3.)

These measure the current reduction in the quadratic function against its initial value
and its latest value, respectively.

There is one further extension of the convergence results which is of interest when
truncated-Newton methods are used in conjunction with the linear algorithm MINRES.
This concerns the use of norms which vary from iteration to iteration.

When MINRES is used with preconditioning (see Chapter 5 for details) the progress
of the linear iterai';ion is assessed using

||T(k)”M('=)

4.3.7
lg® || pre’ (4.8.7)

where ||||ar is defined by

llvli3, = ™My
and {M (")} is a sequence of positive-definite matrices. From the way in which the
MINRES algorithm is derived, it is clear that (4.3.7) has the desired monotonicity

property which the original convergence criterion and (4.3.4) lack.

We shall assume that there exists a uniform finite upper bound on the cigenvalues

of {M (k)}. That is, there exists Ap,ax such that
AMB) < Aoy < 00, VK, (4.3.8)

where A\(M(¥) is any eigenvalue of the matrix M(*%). From the way in which the sequehce
{M(")} is constructed, it will follow that there is a uniform positive lower bound as well.

Thus, there exists Api, such that
0 < Amin < MMB), (4.3.9)
Using (4.3.8) and (4.3.9) it is clear that

M < llaew < Modlwll, VE
47

and hence that

i
(mm)*”"(k)“ < “"'(k)”M(") < ()‘m“) ""'(k)" Vk.

Amax/ 9@ = Nlg®lw = \Amin / [lg®|I’

From this it follows that the ratio (4.3.7) can be used to terminate the linear iteration.

4.4. Practical Forcing Sequences

The forcing sequence in the convergence test can be chosen in accordance with
Theorem (4.2.4). This theorem shows how to obtain linear, superlinear, or quadratjc
convergence by appropriately defining ¢x. '

If weseleet 0 < ¢ =c <1lor0 <c< ¢p <d <1, then the rate of convergence
will be linear. If ¢ > 1, then p(*) = 0 is a valid search direction and no step is made;
hence we must choose ¢x < 1. The reason for choosing ¢x < 1is to insure that at leést
one linear iteration will be performed and that a direction other than the steepest-descent
direction will be selected if possible. When a preconditioning strategy is employed (see
Chapter 5), this condition could be relaxed.

For superlinear convergence, we must have that ¢ — 0 as £ — co. Dembo et al.

[1980] have suggested using
¢ = 1/k. (4.4.1)

This sequence converges to zero quite slowly, so that the convergence test for the linear
iteration is not overly stringent.

Quadratic convergence can be attained if

¢ < llg™I- | (4.4.2)

Away from the solution, ||g®)]| will often be greater than one, so that setting ¢x = ||g®||
may not lead to convergence. This suggests combining (4.4.1) and (4.4.2) to obtain

ér = min {1 /k, ||g('°)||} (4.4.3)

as a forcing sequence. Hereafter, we will refer to (4.4.3) as the “standard” forcing
sequence.

It may be desirable or necessary to limit the number of linezir iterations allowed
during each outer iteration. Because the linear inner algorithm convérges at a linear

48

rate, i.e.
Qi1 - Q@ < K[Q,-Q],

then setting an upper bound of L linear iterations leads to a linear rate of convergence
for the total algorithm. .

Numerical tests of various forcing sequences are conducted in Chapter 7.

4.5. Trust-Region Methods

The quadratic approximation (2.2.2) to the objective function is clearly not valid for
all values of p. Up until this point, a lineksearch algorithm has been used to monitor the
effectiveness of the approximafion and to correct for its deficiencies. Another approach
to this problem is to use trust-region methods.

Trust-region methods, like line-search methods, are concerned with minimizing the
quadratic approximation (2.2.2). But unlike line search methods, a constraint is added
to the subproblem which involves an estimate of the size of the region where (2.2.2)
adequately predicts the decrease in value of the objective function F. In exact terms,

then, we seek to solve
min Q¥)(p) = min F® + g(")Tp+ 1pTG*)p (4.5.1)
P p

subject to
lipll < 6. (4.5.2)

In order to obtain a solution to this problem, the constraint is usually rewritten as .
1p™p < 3(6™)2. This transforms (4.5.1) and (4.5.2) into a convex programming problem.
The global solution is obtained by finding p and A such that

gd®+G%p+ap=0
1p—16®) <0
X(%pr — %5"") =0
A > 0.

(4.5.3)

The problem (4.5.3) is usually solved by computing some estimate of the Lagrange

multiplier A and solving the system of equations

(G(k) 2 I)p(k) = —g®, ' (4.5.4)

49

A check is then made to insure that the constraint (4.5.2) is satisfied. If not, a new X is -
computed and (4.5.4) is erﬁployed once again.

The final step in a trust region iteration involves computing z(*+1) and §+1), This
step is usually based on the value of p'¥), the ratio between the actual function decrease
and the predicted decrease:

) _ F® — F(z® + p®)
P = TR 2 + pk)

(4.5.5)

Generally, the larger the value of p{¥), the more adequately the constrained subproblem
(4.5.1), (4.5.2) indicates a decrease in the objective function. Thus, if p(¥) is large, a
step is made to the new point g(k+1) = z(K) 4 () If p(k) is especially large, the trust
region parameter 6(%) will be increased, indicating greater confidence in the quadratic
approximation. On the other hand, if p) is small, no step will be made (i.e. gk+1) =
z(¥)) and 6(*) will be decreased.

The above is intended as a genera'l outline of trust region methods. More detailed
information as well as exact computational formulas can be found, for examplé, in Vardi
[1980] or Hebden [1973).

When the Newton equations (2.2.3) are being solved iteratively, repeated solution
of (4.5.4) is impractical. Steihaug [1980] has shown that use of (4.5.4) can be avoided
if the constraint (4.5.2) is used to terminate the linear conjugate-gradient algorithm.
Steihaug’s work was done in the context of truncated quasi-Newton methods (similar
to truncated-Newton methods, except that an approximate solution is obtained for the
quasi-Newton equations (2.3.3) rather than the Newton equations (2.2.3)), but his ideas
are immediately applicable here.

At each iteration of the linear conjugate-gradient algorithm, Steihaug suggests

monitoring the length of ||p,||. This leads to the following formulas 2nd tests:

1. pgy1 == pq + gty
2. If ||pg+1]] < 6% then continue with the algorithm.
3. Otherwise compute 7 > 0 such that ||p, + Tu,|| = 6®), set p(¥) =

Pq + Tug, and terminate.

Steihaug has managed to show that the resulting algorithm is globally convergent, and
is able to prove theorems comparable to (4.2.4) on the actual rates of convergence for
various forcing sequences.

50

Little computational expericnce has been reported for truncated-Newton algorithms
based on trust-region strategies. Although they show obvious promise, they lie outside
the scope of this thesis, and will not be considered further. Much of the work used in

designing linesearch-type algorithms is directly applicable to the trust region approach.

51

5 Preconditioning

5.1. Imntroduction

For every numerical algorithm there is an ideal problem. For Newton’s method,
the ideal problem is a quadratic function. For the quasi-Newton and conjugate-gradient
methods, the ideal problem is a quadratic function with Hessian matrix equal to the
identity. More generally, we often think of the class of problems which the algorithm
solves well. For Newton’s method, this is the set of functions which are “nearly”
quadratic. For quasi-Newton and conjugate-gradient methods, it is the set of functions

whose Hessians have clustered eigenvalues.

Because most problems are not ideal for an algorithm, it is important to have
alternative techniques of modifying the initial problem (without altering its solution)
so that it is easier to solve. The general idea is to make the given problem “closer” to
the ideal problem. This type of technique is called preconditioning.

Preconditioning is such a powerful and general idea that there exist preconditioned
versions of almost every known numerical algorithm, both direct and iterative. Direct
algorithms often use preconditioning to reduce the error in the computed solution. One
common example of this is the use of column scaling in Gaussian elimination (see, for
example, Wilkinson [1965], chapter IV). Iterative methods generally usc preconditioning
to speed up the rate of convergence (although they mb.y also be concerned with the
condition of the problem). One of the best-known and best-understood exarﬁples of thisis
the generalized (i.e. preconditioned) linear conjugate-gradient algorithm (Concus, Golub,
and O’Leary [1976]). A brief description of preconditioning for the‘linear-conjugate

gradient algorithm can be found in section 3.8.

To give some idea of the versatility of this concept, it is possible to consider Newton,
quasi-Newton, and conjugate-gradient algorithms as preconditioned stecpest-descent al-
gorithms, with the preconditioning being generaled as the algorithm proceeds and being

modified at each iteration.

In large problems where it is expensive to compute information, it is important to
make as much use as possible of every computed quantity. This generally takes the form
of using current information to precondition future iterations.

With truncated-Newton methods, there are two algorithms to be concerned with.

52

First of all, there is the outer nonlinear iteration. In the basic method, this is just the
steepest-descent method. This could be replaced by a conjugate-gradient or a limited-
memory quasi-Newton method (using Newton’s method would defeat the whole purpose).
This idea will be discussed in Section 5.2. During the linear algorithm, matrix-vector
products involving the current Hessian matrix are computed. It would be desirable to
use these to precondition future non-linea'.r and linear iterations. This is the subject of
Sections 3 through 6. .

We believe that the range of problems for which a truncated-Newton method will
be successful will be extended considerably only when a good direction can be produced
in a small number of linear conjugate-gfadient iterations, and to this end the use of

preconditioning is essential.

5.2. Preconditioning with & Non-Linear Algorithm

When using a preconditioned modified Lanczos algorithm to approximately solve the

Newton equations (2.2.3), at each iteration it is necessary to solve a system of equations
Mz=r

involving the preconditioning matrix M. Most non-linear optimization algorithms can
be viewed as computing a search direction by solving, possibly implicitly, a system of
linear equations

Bp = —g,

for some matrix B. Thus, by applying the formulas for the non-linear method to the
vector 7, it is possible to implicitly deﬁne. a matrix M which can then be used as a
preconditioning matrix in the linear algorithm.

§etting M = 1I, i.e. using an unpreconditioned algorithm, corresponds to the
steepest-descent method. Another possible preconditioning matrix for this system is
an r-step limited-memory quasi-Newton matrix H. As we approach the solution, and F
looks more and more like a quadratic function, a small number of quasi-Newton steps can
often produce a search direction which is much sui)erior to the steepest-descent direction
or to a traditional non-linear conjugate-gradient direction (see Gill and Murray [1979]).

Using a quasi-Newton preconditioning, the vector —H g(*) will be the first non-trivial

member of the sequence {p,} and this direction is far more likely to give a good reduction

53

in the function than —g(%), Conéequently, even if the linear conjugate-gradient algorithm

were terminated immediately, a reasonable search direction would have been obtained.

5.3. Diagonal Preconditioning of the Nonlinear Algorithm

Nonlinear minimization algorithms have been found to work more efficiently if the
variables are properly scaled. This means that all of the variables are correctly weighted,
i.e. that a unit step along the search direction will approximate the minimum of the
function in that direction. It also implies that the tolerances for the algorithm have the
correct scaling (a factor even for the more scale-invariant algorithms such as Newton’s
method). One way of achieving this is through a diagonal preconditioning.

If the direction of search is obtained from the quasi-Newton equation (2.3.2) (which
is the case when a limited-memory quasi-Newton algorithm is used as a preconditioning
strategy), the BFGS formula (2.3.9) may be simplified so that the matrix B*) does not

appear in the rank-two correction:

BtV =pwy 1 momT, L mwT

g(®) Tplk) a(k)y (k) (k)
This result implies that even if the oﬂ'-diagonal elements of B) are unknown, the
exact diagonal elements can still be recurred. These diagonal elements may be used to
precondition the conjugate-gradient method. Let v; and ¥, depote the jth elements of
g%*) and y(*) respectively. If A1 = diag(8y,...,8,) and Ay = diag(éy, .. .»6,) denote
the approximate diagonal Hessians during the (k+ l)th and k*h iterations respectively,
then

L a2y 1 2

A T aR)y () Tp(k)

This diagonal preconditioning step involves an approximation to the diagonal pof G
based on g(")', ptk) ahd y(*). In the linear iteration of a truncated-Newton method,
though, matrix/vector products involving G are computed. It would be desirable to use
this more exact second-derivative information to compute A, the diagonal precondition-
ing matrix. .

Several methods of computing A have been developed and tested. The first two are
rank-one and rank-two Quasi-Newton updates which are based on the (false) assumption

that G is a diagonal matrix. A third is a BFGS update to the diagonal of the approximate
' 54

Hessian. In addition, it is possible to use exact information about the diagonal of the Hes-
sian either to precondition the linear algorithm or to initialize the]inea;' preconditioning,.
Note, however, that even if matrix-vector products of the form Gv can be found, it may
be inconvenient to compute Gy;.

At each linear iteration, a computation of the form
y=Gs

is performed. If the symmetric rank-one Quasi-Newton update is rewritten with B
replaced by the diagonal matrix A, we obtain

(y — Ais)(y — Ais)T
(v — A¢s)Ts)

Ai+1 —_ A{ +

Any ofi-diagonal terms in the rank-one term are ignored. Notice that no matrix need be
stored in order to implement this update.
A similar adaptation can be performed for the BFGS formula. This time the result
is
1

1
r1 = A; — ———(As8)(Ais) T+ ——yy”
AV sTA;s(A s)(Ags)' + AL

Again, ofl-diagenal terms in the rank-one terms are ignored, and no matrix storage is
required.

There is a further way in which a diagonal quasi-Newton update can be used to
approximate to the diagonal of G. Because the linear conjugate-gradient algorithm is
equivalent to the BI'GS algorithm (when applied to the same quadratic with By = 1), it
is possible to show that B,, = G. Thus, if we were able to update only the diagonals of
B, at the end of n steps we would have the exact values for the diagon;ll clements of G.
Unlike the two diagonal updates above, this will be an exact rather than an approximate
quasi-Newton update.

To devélop this update, we will ignore the nonlinear algorithm for the moment, and
concentrate our atiention on one instance of the linear conjugate-gradient method. We

are altempting to minimize the quadratic function

¢(p) = 1p"Cp + p'c,

and hence

9(p) = ¢'(p) = Gp+ c = —7(p),
55

where 7(p) is the residual at p. The linear conjugate-gradient algorithm is initialized with

po = 0, and at the qth iteration the next estimate of the solution is computed as

Pg+1 = Pq + Qqlg,

where u, is the search direction and a4 is the step-length.

The BFGS algorithm computes the (same) search direction using the formula
Byug = —gq, (5.3.1)

where g, = g(p,). I an exact line-search is used, the step-length for the BFGS algorithm
is the same as that for the linear conjugate-gradient algorithm. Under the assumptions

that pop = 0, By = I, and that the new approximate Hessian By is computed using

1

Bgy1= By — ——(
7 7 sg"quq

1 :
By34)(Bgsg)™ + quyf, (5.3.2)
yqsq

both algorithms cdmpute the same estimates of the solution at every stage.
It is possible to adapt (5.3.2) so that only the diagonals of the update need be
computed. Using (5.3.1) and

8¢ == Pg+1 — Pg = Qqllq,

we can conclude that

Bgsq = —agyg,. (5.3.3)
The other import#nt fact is
Yqg = Gg+1 — 9q = aunq- (5.3.4)

If we incorporate (5.3.3) and (5.3.4) in (5.3.2), we obtain

- 1 7 1 T
Bgt1 = B, u:frqrqr" + uacuq)(Guq)(Guq) . (5.3.5)

Using (5.3.5), any individual element of B, can be‘ individually updated.

- When the linear conjugate-gradient algorithm is used directly, (5.3.5) is quite ade-
quate. Unfortunately, problems arise when a linearly preconditioned modified-Lanczos
algorithm is used instead. First there is the problem of linear preconditioning. The'
correspondence between the BFGS and the linear conjugate-gradient méthods assumes

56

that no linear preconditioning is used. This is a very easy problem to surmount, since
the linear conjugate-gradier;t algorithm preconditioned by the matrix M is equivalent to
the BFGS algorithm initialized with By = M. To see this, replace G by M~iGM—% in
the above derivation.

The other problem concerns scaling. When the linear conjugate-gradient algorithm
is implicitly implemented using the Lanczos algorithm, the vectors corresponding to the
search direction and the residual are not properly scaled. This scaling does not affect
the final term in (5.3.5), since the scaling enters equally into the numerator and the
denominator. The other rank-one matrix is affected, however. In our implcmentatiod
of the algorithm, the correctly scaled residual is available. This leaves only the inner
product, un'rq. Using the recurrence relation for the search direction Ugq, and the fact that
the residuals are M-orthogonal, it can be shown that

T __ T
UgTg = Z,7q,

where

M(")zq = r,.

Since our algorithm computes equally-scaled multiples of zg and r4 as well as the correctly
scaled 74, it is possible to correctly compute the inner product.

Because the Hessian matrix is not always positive-definite, the modified-Lanczos al-
gorithm alters the subproblem it is solving when it runs across evidence of indefiniteness.
The preconditioning scheme is trying to approximate the diagonals of the actual Hessian
matrix, and two of the preconditioning algorithms described above have the property of
hereditary positive-definiteness, so there is some question as to what should be done when
the Hessian matrix is modified. We have chosen to omit the diagonal update whenever
the matrix goes indefinite. Since our implementation of the modified-Lanczos algorithm
only performs one iteration with the modified matrix before returning to the nonlinear
algorithm, very little sccond-derivative information is wasted using this approach.

There is some theoretical evidence to indicate that, among diagonal preconditionings,
this final preconditioning strategy is the most effective. Forsythe and Straus [1955] have
shown that if the Hessian matrix G has property A, then the diagonal of G is the optimal
diagonal preconditioning. This assumption is valid for many problems arising in partial
differential equations. Also, in the general case, van der Sluis [1969] has proven that

57

preconditioning with the diagohal of G will be nearly optimal, in the sense that the
condition number of G preconditioned by its diagonal will be at mosf; n times as large
as the condition number of the optimally diagonally preconditioned G. Thus, estimating
the diagonal of G using the BFGS formula (1.5) should be effective for all problems.
Using (5.3.5) it is possible to compute any number of subdiagonals in addition to the
main diagonal. Because this extension is so straightforward, the details will be omitted

here.

5.4. Diagonal Preconditioning with MINRES

In sections 5.2 and 5.3, several methods for diagonally preconditioning a truncated-
Newton algorithm were deseribed. The first three (the non-linear preconditioning and
the rank-one and rank-two divagonal updates) can immediately be applied to MINRES
since they do not rely on any special properties of the underlying linear algorithm.
However, a fourth preconditioning (a BFGS update to the diagonal of the approximate
Hessian) is dependent on the correspondence between the BFGS quasi-Newton algorithm
with exact line searches and the linear conjugate-gradient algorithm. In order to adapt
this preconditioning strategy to MINRES, we must analyze the correspondences between
MINRES and the linear conjugate-gradient method.

The search directions in MINRES are different to those generated in the linear
conjugate-gradient method. Consequently, at first sight we cannot implement the fourth
preconditioning technique which relied on the relationship between the search directions
for the BF GS algorithm applied to a quadratic function and those for the linear conjugate-
gradient algorithm. What we shall show, however, is that from information available in
the MINRES algorithm, we can easily generate both the required search directions and
the required vectors to update the Hessian approximation.

To this end, we define

W, = [wi, ..., wg—1, W] = V‘IQZ"
and
Wy = [wy,...,wg).
If the Lanczos process stops with 8,41 = 0, it is then easily verified that

GNp = VT LT =V, QT = W,,.. ' (5.4.1)
58

It is now straightforward to establish the desired correspondences. Using results from

Paige and Saunders [1975], we obtain

qu’G - p}qt = TQ(BQ/CQ)znq = YgNg (5-4-2)
and ca R
Tg =Tq — YqWq ‘
= P18182: - -84(8,wq — vg41))/cq — Vgwq (5.4.3)

= (—P18182* -84Vg11)/cq = Egy1v441.

Recall that we are trying to compute

1
Bgy1 = B, — " 7 ——TqTg Ty (G’uq)(G’uq) ,

’(G Ug)
where the vectors ug, and 7y refer to the search-direction and the residual from the

linear conjugate-gradient algorithm. Formula (5.4. 3) indicates how to compute rq for

this update. Smce

Pq+1 = Pg + 0ql,
and

Pf-q—l = Pf + Tgng,

we can subtract these two equations from each other and use (5.4.2) to obtain

gy = (Yg41 + Tg41)Ngt1 — VqMq: (5.4.4)

Multiplying (5.4.4) by G and using (5.4.1) we obtain

aqGug = (g1 + Tg41)War1 — g, (5.4.5)

Consequently, the vector Gu, need not be calculated directly. This is of particular
significance in the non-linear algorithm when G may be unknown. Thus, we are able to
compute a scaled version of the conjugate-gradient search direction. Since the final term
in the BI'GS update is scale-invariant, we can use (5.4.4) and (5.4.5) in order to compute

it. This is not true of the first term, but a4 can be compu'ted using

ol — riM~1r)) _ 53+1"’Z‘+1(M—1"’q+1) — 62,4
g (aq“q)T(aqG"q) (aq“q)T(aqG“q) (aqug)T (aunq),

where M is the preconditioning matrix for the Lanczos algorithm. Combining all of these

59

results, we obtain the desired formula for the BFGS update:

0gbq+1

H T
" {agug)Trg Y (aquq)T(aunq)(aun“)(O‘qG“q) :

Bq+l = Bq
5.5. Tridiagonal Preconditiong

The linear conjugate-gradient algorithm transforms the Hessiar} matrix G according

to the formula

GRy = V Ty + Bat1vg+1€5

Thus
RIGR, =T,

This suggests the use of the preconditioning matrix
T
VTV, = M,.

The matrix M, is rank deficient and consequently cannot be used directly as a precon-
ditioning matrix. By extending the definitions of V; and T, we can construct a precon-
ditioning matrix utilizing the information in M,.

In order to extend V,, we form its QR factorization (using, for example, Householder

transformation (see Wilkinson [1965], pp. 290-299)):
Vq = @R,
where Q is an n X m orthogonal matrix; R is of the form
R,y
R = ,
()
and R, is a k X k upper-triangular matrix. If we partition @ conformally to R:

Q = (@1 @),

the columns of Q; span the same space the columns of V,, and the columns of @2 span its

orthogonal complement. To complete the extension of Vg to the whole space, we define

V,= Q(};‘ 2)

60

To extend T, we exploit the convergence theory for the Lanczos algorithm. Parlett -

[1980] has shown that the eigenvalues of T, tend toward the extreme eigenvalues of G.

. T, 0
T"=(0q "/I)’

e = xmin(Tq) S 9 _<_)\max(Tq) = ey,

It is natural, then, to define
where

Some possible choices for v are
7= 4(e1 +en)
and
= (el . e")%.
The full preconditioning is then
~ =~ =T p
M, = QRT,R Q".
A similar tridiagonal preconditioning can be produced by using the approximation
s AR |
G =~ R, 4R, ,

where R, refers to the extension of R4 to the whole space (as in the definition of ffq).

5.6. Approximating the Product of the Tridiagonal Preconditionings

Although at the first iteration the tridiagonal matrix from the Lanclzos algorithm
has eigenvalues which approximate the extreme eigenvalues of G, at subsequent iterations
the Lanczos algorithm is being applied to a preconditioned version of 'G whose extreme
eigenvalues may bear little relation to those of G itself—in fact, this is the intent of the
preconditioning strategy. One attempt to surmount this problem involves computing
the producf; of the previous preconditioning matrices]t/.f‘-, and using this product as the
precohditioning at the next iteration. Becausc of storage limitations, this product cannot
be computed exactly, and an approximation to it must be used. That apbroximation is
the topic of this section.

Suppose we have already computed

k—1
My ~ II M;
$=1

in the factored form

=T
_ LryLg_, 0
My = (Vi |VEL—1)(0 k 172 II)(VI:—I | Vie,)%

Also assume that the current preconditioning matrix M is available in the form

_ LLT 0
it = v M 2 v

- .1
Here, Ly is lower-bidiagonal and Li_y is lower triangular. Then, by applying M on the
left and right to M_;, we obtain an approximation to My:

— Lk 0\ (LT O
M~ (Vi | V,,l)(0 1 I)MH(0" " I)(Vk | ViH)T

If we treat the central factors in this product as block 2 X 2 matrices, compute their
product, and ignore off-diagonal terms, we obtain
— Ly 0Y,. ~ ~T LTo 0 0
My~ (Vi |V Vel L VE_) /%)7
e~ W VR 0 s E (G 0)# (3 s p))01V

’

~ T
LiL, 0

= 1 ke 1\T

= (Vi |V)(: 7i,)(vklvk)

where L is lower triangular and J, = Y%,_;- Ly is obtained by doing a Cholesky
factorization of the first matrix in the sum above. This is the desired approximation to

the product of the preconditioning matrices.

62

6 Extensions to Other Problems

6.1. Introduection

So far, we have been concerned with the solution of unconstrained minimization
problems v\;here few assumptions have been made about the form of the objective func-
tion F. It is very common to encounter problems where auxiliary conditions, called
constraints, are placed on the independent variables z. Another common problem is the
minimization of functions which can be represented as the sum of the squares of other
functions. Such problems are often referred to as least-squares problems.

In this chapter, we show how truncated-Newton methods can be adapted to solve
problems of both these types. In sections 6.2-6.4 we discuss constrained problems, and
in section 6.5 a treatment of least-squares problems is given. Since successful methods
already exist for dense problems of these types, we are especially concerned with large
sparse problems. .In particular, currently it is difficult to solve constrained problems
where the number of variables n, the number of constraints ¢, and their diﬂ'erénce n—t

are all large. Truncated-Newton methods provide some hope in this case.
6.2. Constrained Minimization Problems

The most general constrained optimization problem can be expressed in the form
min F(z) ‘ (6.2.1)
x

subject to the conditions

ei(z) > 0, i=1,...,m. (6.2.2)

Here, F(z) and ¢;(z) are functions mapping from R™ — R.

-‘Problems of this type are often further classified by the form of the constraints
(6.2.2). The major division is made between linear and non-linear constraints. The
constraints are also further divided into groups of equality and inequality constraints.

The form of the constraints can strongly affect the way in which the problem (6.2.1),
(6.2.2) is solvgd. Methods for problems with linear equality constraints will be discussed
in section 6.3, and linear inequality constraints in section 6.4. Methods for non-linearly
constrained problems are still an active research area. It is not yct clear how best to
apply Newton’s method to such problems when the number of variables is large. For

63

this reason, and because the teéhnical details of such methods can strongly affect the '
development of the relevant theory, we will only consider the application of truncated-
Newton methods to linearly constrained problems. Much of what we describe will be

relevant to the non-linear case.
6.3. Problems with Linear Equality Constraints

The problem we are concerned with in this section (denoted hereafter as ECP) is
usually written in the form

min F(z) | (631)

subject to
Az = b, (6.3.2)

where A is a t X n matrix.
The set of constraints (6.3.2) restricts the set of “feasible” points, i.e. the set of
points which will be considered when solving (6.3.1). As usual,we denote the solution to

ECP by z". If % is any other feasible point, then
AlAz) = Az — =

= Az — A%
=b—-b=
Also, if p is any vector satisfying
Ap =0,
then . .
Alz +p)= Az + Ap
=b+0
= b,

80 " + p is also feasible. Thus, all feasible steps from the point z* are orthogonal to the
rows of A (or, equivalently, to the columns of AT).
Let Z denote a matrix whose columns form a basis for the null space of AT, i.e.
AZ = 0. Then any feasible point must be of the form z* + Zp, for some p,. If we
examine the Taylor series for F' around the point z*, we find that |
2

F(z" +ep) = F(z" + eZp;) = F(z") + epT2Tg(z") + <

> p2Z27G(z")Zpz +-+-. (6.3.3)

Clearly, if z* is the minimizing point for the constrained problem, then

Z%(z") =o. ' (6.3.4)

The quantity ZTg will be referred to as the projected gradient.
The condition (6.3.4) implies that g(z") lies in the range of AT:
0= ZTg(z")
= Z"(ATga + Zg,)
= 27Zg,.
Hence, g, = 0. The coeflicients of the vector g4 are denoted)\;, ,)\: and are called

the Lagrange multipliers at z°.

Using (6.3.4) and (6.3.3) we find that
F(z* +p)=F(z’)+ ——pzZTG(fc)Zps +

so that the matrix ZTGZ (tl}e projected Hessian) must be positive semi-definite at z".
Thus we have obtained first- and second-order necessary conditions for a solution
to problem ECP. Sufficient conditions, derived in the same way, are (if z* is a feasible
point): .
@) Z%(=")=0 (g(=") =A\").
(i) ZTG(z")Z is positive definite.

We now move on to derive methods for solving ECP. To do this, we return to the
Taylor expansion (6.3.3). The function F is expanded about an arbitrary feasible point
z in the direction Zp, with € = 1, and the series is truncated after the quadratic term.

We obtain
F(z + Zp;) = F(z) + pzZ 1pT27G Zp,.

Setting I'(z + Zp,) = 0, we obtain that the step to the minimum of this quadratic is

found by solving the projected-Newton equations:

Gzp = =0z, (6.3.5)
where
=272,
9: = Z7g.

Because of the similarity between (6.3.5) and the Newton equations (2.2.3), it is easy
to derive a modified-Newton algorithm for solving ECP by speclfymg that G®) and g(*)
be replaced by G(k) and g() in all the relevant formulas.
65

Truncated-Newton methods can be extended just as easily. All that is required is a

subroutine to compute products of the form

y=GPv

for any v. The fact that a projected Hessian is being used is irrelevant to the algorithm.
In the above discussion, we have not stated how to obtain Z, the basis for the null-

space'of AT, In the dense case, it is possible to derive Z from a LQ factorization of A.

(We will assume that A has full row rank.) There exists an orthogonal matrix @ which,

when applied to A on the right, yields an lower-triangular matrix:
AQ=TL={(L 0), ie A=QTL,
where L is a t X t lower-triangular matrix. We partition @ conformally' to It
Q= 2)

so that
AQ = (AY AZ)= (L 0).

Thus, the last (n — t) columns of @ are brthogonal to the rows of A, and Z is the
desired basis for the null space of AZ. The LQ factorization above can be computed
using elementary orthogonal transformations (such as Househo]_der reflections or Givens
rotations).

In the sparse case, it is usually preferable to use a technique known as variable

reduction to form Z. We partition the constraint matrix A in the form
A=(TU),

where T is a‘t X t non-singular matrix. For simplicity, we have assumed that T cor-
responds to the first ¢ columns of A. With this partitioning of A, a matrix Z orthogonal

to the rows of A can be defined as

(")

If Z is defined in this way, it need not be explicitly formed. We need only be able to solve
systems of equations involving T and T7, so that all that is required is a factorization

66

of T. Note that the matrix 7= is not obtained explicitly. To compute the product Z _ -
times a vector, we perform back-substitution using the factors of 7. ;I‘his allows us to
exploit sparsity in the constraint matrix, although in general the condition number of the
matrix Z obtained from variable reduction will be larger than for the matrix Z obtained

from an LQ factorization (in that case, we will have (Z) = 1).

6.4. Linear Inequality Constraints

6.4.1. Theory

The problem we are considering in this section (denoted by ICP) will be posed in

the form
min F(z) (6.4.1)
z
subject to
Az = b,
4.2
1<z<u, (6.4.2)

where A is an m X n matrix. Notice that the only inequality constraints are just simple
bounds on the variables. General inequality constraints are converted to this form by
the introduction of slack variables. This problem is considerably more complex than the

equality-constraint problem ECP since we do not know in advance which bounds (if any)

will be exactly satisfied as equalities at the solution.

If A were the set of constraints active at the solution, then the solution of ICP
would also be the solution of the equality-constraint problem min F'(z) subject to Az =
b. This suggests applying techniques for the equality-constraint case to ICP. We will
obtain the solution to problem ICP by solving a sequence of minimization problems
subject to linear equality constraints. The objective function (6.4.1) remains the same
in all of these subproblems, but the constraint matrix is modified to reflect the current
assumptions about which bounds are satisfied as equalities at the solution. We will refer
to the current set of constraints as the working set and will assume that they correspond
to the equation Az = b. As before, Z will be used to denote a matrix satisfying Az =o.

The working set will contain a subset of the original problem constraints, and will
attempt to predict the correct active set. Since the prediction of the active set could be

. wrong, an active set method must also include procedures for testing whether the currect
prediction is correct and altering it if not. An essential feature of the active sct methods

67

o

considered here is that all iterates are feasible.
Following the development in Murtagh and Saunders [1978], the matrix A is parti-
tioned as

A= (BSN) (6.4.3)

where B is a square m X m non-singular matrix, N is m X r, and S ism X (n —
m —r). B is called the basis matrix and its columns correspond to the basic variables.
The columns of N correspond to the nonbasic variables, i.e. those variables which are
equal to one of their bounds. The columns of S correspond to the remaining variables,
which are called superbasic. The number of superbasic variables indicates the number of
degrees of freedom remaining in the minimization. In the important special case of linear
programming where F is a linear function, the matrix S is null. With the partitioning
(6.4.3) of the matrix A, we can write the constraints for the subproblem in the form

= 3 M(z)= ()= 049

TN
where the components of by are taken from either [or u, depending on whether the

lower or upper bound is binding.

We expand the function F in a Taylor series about some feasible point z:
F(z +p) = F(z) + ¢(z)p+ 42" G(z)p + - -~ (6.4.5)

If F(z) were a quadratic function, then G would be a constant matrix, and there would
be no higher-order terms in this expansion. In this case, we could obtain a constrained

stationary point at z + p by insisting that .

B § N)(Z?):o,- (6.4.6)

OOIpN

i.e. the step remains on the surface given by the intersection of the active constraints;

g pB BT 0
(g’;) ; G(Ps) - (sT o)(’;), (5.47)
gN PN NT I

i.e. the gradient at z + p is expressible as a linear combination of the active constraint

also

normals. These two conditions correspond to the conditions p = Zp, and (6.3.4) in the
previous section.

68

For a more general function F(z), the step p may not lead dircctly to a stationary
point, but (6.4.6) and (647) can be used to determine a feasible descent direction. From

(6.4.6) we have pyy = 0 and pgp = —Wpg, where W = B~1S. Thus,

Notice the correspondence between this matrix and the matrix Z computed using the
variable-reduction method in the previous section. As before, we do not explicitly
compute B~!, but instead compute some factorization of this matrix. Back-substitution
is then used to compute the necessary products of W times a vector. This matrix is
indeed orthogonal to the working set matrix A. The Lagrange multipliers (1 X\)T can be

computed using the equations

Blu=gp+(I © O)G(IW)PS
0

A=gn—NTu+(0 0 I)G(;V)ps.
0

When ps = 0, these equations reduce to

and

The Lagrange multipliers can be used to modify the working set of constraints. For
example, suppose that bound 7 is fixed at its lower endpoint, i.e. we are assuming that
z; = l;. If the Lagrange multiplier \; corresponding to this bound is negative, then
the objective function F will decrease locally if z; is allowed to increase in value. This
indicates that bound 7 could be dropped from the working set. A similar situation exists
for upper bounds, but there the Lagrange multiplier should be positive if the bound is
to be relaxed.

Using the Taylor series (6.4.5) and equation (6.4.6), we obtain that a first-order
condition for z" to solve ICP is that ZTg(z") = 0. This is the same condition as for the
equality—const.;raint probleni. We are assuming, of course, that z* is a feasible point and
that Az" = b.

The Taylor expansion (6.4.5) also leads us to a seccond-order condition for a solution

69

to ICP. Because the projected gfadient is zero, we obtain directly that
:=27GZ

must be positive semi-definite at z”.

Sufficient conditions for a minimum are slightly more complex, since the Lagrange
multiplier for an active constraint may be zero. Also, complications can arise because a
variable could be fixed at either a lower or an upper bound. For simplicity, we assume
that all active bounds are lower bounds. Results for upper bounds are obtained by
changing > to < below. Keeping this in mind, we find that z* is a solution to ICP if:

(i) Az* =b,1 < 2" < u and AT = b.
(i) ZTg(z") = 0 (where AZ = 0).
(iif) X" > 0 (where X is obtained from (6.4.7)).
(iv) ZTG(z")Z is positive definite.
(v) If A\{ = 0, then pTG(z")p > 0 for all p such that N, > 0.
Assuming that an initial feasible point is available, the general structure of an

working-set algorithm can be summarized as follows:

(6.4.6) Working-set Algorifhm

W1. Let z(® be the current point. We assume that z(*) is feasible and
that A is the matrix of constraints active at z(¥),

W2. Check if (¥ is the solution of the equality-constraint problem. If
not, go to step WS,

W3. Calculate A = gy — NTp. If)\ satisfies the second-order sufficient
conditions for a minimum, then z* is the solution to ICP. Terminate the
algorithm.

W4, If X\; < 0 for some variable z,; at its lower bound (or A > 0
for some zp; at its upper bound), compute a direction p*) such that
g(“)Tp(") <0, pg\’;') >0 (;»S(;} < 0), and p&'?,’ = 0 for 7 £ j. Tor such a
p™), the i-th bound becomes inactive and is deleted from the active set.
Go to step W6.

W5. (g(").yé A)\) Construct a direction p(®) such that ATp(") = 0,
g(")Tp(") < 0 (i.e. a descent direction for the equality-constraint problem).
This can be done by solving the projected-Newton equationé for the

70

equality-constraint problem.

W6. (line search) Normally, the line search would be based solely on
a “sufficient decrease” in the objective function F. In this context, it is
possible to run into a fdrmerly inactive bound while searching along p(¥).
If a new constraint is encountered during the linesearch, it is then added

to the active set. Go to step W1.

Because there is possibly some choice in step W4 as to which constraint to drop
from the active set, various active-set strategies have been suggested for solving ICP. For
this thesis, where we are concerned with the applicatidn of truncated-Newton methods,

the details of the strategy are not important.

6.4.2. The Application of Truncated-Newton Methods to Inequality-

Constraint Problems

Since the algorithm described in the previous section computes a search direction p
by solving a set of projected-Newton equations, it may appear that truncated-Newton
methods can be applied directly for the solution of ICP. If no preconditioning is used,
this is indeed true. The construction of p(¥) in step W5 is then a local problem involving

the (approximate) solution of a set of linear equations.

However, when preconditioning is a part of the algorithm, certain complications
arise. With equality constraints, the projection matrix Z remains constant; but with
inequality constraints, the projection matrix, and hence the structure and size of the
projected-Newton equations (6.3.5), can change from iteration to iteration as the active
set changes. In this section, we describe how to modify the preconditioning matrix to

reflect these changes.

In order to simplify the discussion, we will assume (without loss of generality)
that bounds are added or deleted one at a time. We will also assume that a diagonal
preconditioning is being used. More complex preconditionings can be used, and it is
straightforward to adapt the following discussion to the more general caée. In fact,
the ideas here are based on the presentation in Gill and Murray [1973b] where a (full)

quasi-Newton approximation to the Hessian is being modified.

Deleting a bound corresponds to deleting a column (say the last) from A. This‘

implies that a column must be added to Z:

71

Z=(Z]2).

Then

2TGZ TGz

(For large-.scale problems, this matrix would never be explicitly computed; we use it

T, T,
7767 = (Z GZ2 Gz).
here only as a theoretical tool.) Let D be our diagonal preconditioning corresponding to

ZTGZ. A natural choice for D, the new preconditioning, is thus

p-(7e)

where a = 27Gz (or @ = 1 if this quantity is expensive to compute).

Adding a bound is a slightly more difficult problem. This corresponds to reducing
the size of Z by one column. If we are deleting the g-th superbasic variable, then we
just delete the g-th diagonal element of D to obtain D. Deletion of a basic variable
can be achieved by interchanging the basic variable with a superbasic variable, and then
deleting the new superbasic column as indicated.

The interchange of the p-th basic variable with the g-th superbasic variable can be

described by an equation of the form
Z = Z(I + egv7),

where e, is the g-th unit vector and v is defined by the equations

BT1rP=e,,,
__ QT

y = Sy,
. .T

Yq =Y €q,

-1
v= —(y+eg).
” (v q)

These quantities are easily computed.

We would now like to apprdximate the diagonal D of
Z76GZ = (I + evT)TZTG Z(I + ev")

given Z and 'an approximation D to the diagonal of Z TGZ. The formula for the new
diagonal element d; is _
di=d; + 2v.~zZ'Gz.- + ququv?,

72

where z; is the i-th column of Z. Unless the values {zZ‘Gz,-} are inexpensive to compute,
updating D in this manner will not be feasible. As a result, we suggest s{mply deleting the
g-th column of Dj; there is little justification for applying the transformation (I + equ)
directly to D.

Further details concerning the treatment of constraint matrices for large problems

can be found in Murtagh and Saunders [1978].

6.5. Lelast-Squares Problems

Least-squares problems are concerned with finding a point z* which minimizes the

sum of squares of nonlinear functions

F(z) = f:[f,-(z)]2, t€R", m>n. (6.5.1)

i=1

Such problems can be solved using the minimization algorithms described in the previous
chapters, but the special form of the function F ’sug'gests the use of more specialized
techniques. '

The gradient vector g(z) and Hessian matrix G(z) of F(z) are given by 2J(z)7f(z)
and 2(J(z)TJ(z) + B(z)) respectively, where J(z) is the m X n Jacobian matrix of f(z)
whose i-th row is Vfi(z) = (8f;/0z,8f;/8xs,...,8f;/0z,), B(z) = v, fi(2)Gi(z)
and Gy(z) is the Hessian matrix of fi(z). (F(z) is assumed to be twice continuously
differentiable, although the methods discussed in this section will often work when this
condition does not hold.) The restriction that m is greater than or equal to n serves only
to simplify the notation. .

If Newton’s method is applied to the solution of (6.5.1), the special form of the
Hessian matrix and gradient vector leads to the following set of linear equations for the

Newton direction
(ST (0 + B0 = —J(®)Tf(®). (6.5.2)

The Gauss-Newton method was the first designed to exploit the special structure
of the Hessian matrix and gradient vector which occurs in least-squares problems. The

method computes the direction of search as the solution to

J(zW)T. J(z(k))p(akgv = —J(z")Tf(z¥)). ' (6.5.3)
73

These equations are obtained by neglecting the second-derivative matrix B(z®) in (6.5.2).
The Gauss-Newton method is intended for problems where ||B(z)|| is small compared to
[IJ(z)TJ(z)|, such as the so-called “small-residual problem” where f(z) — 0 as z — z".
For these problems the Gauss-Newton method will ultimately converge at the same rate
as Newton’s method, despite the fact that only first-derivative information is used. We
will concentrate on that case here. '

Truncated-Newton methods can be applied directly to the solution of the equations
(6.5.3) (or even (6.5.2) if the second derivative information in B(z) is available). The fact
that the Hessian matrix and gradient are of a special form is irrelevant to the truncated-
Newton algorithm. |

If we assume that the matrix J is of full rank, then the system of equations (6.5.3)
will have a positive-definite coefficient matrix. Thus, unlike when we were solving more
general optimization problems, it is possible to use the regular linear conjugate-gradient
algorithm to approximately solve (6.5.3). It is possible to use the algorithm described in
section 2.4, if weset A= J TJ . However, because of the factored form of the coeflicient
matrix in (6.5.3), and because we would like to precondition the linear algorithm, the
following set of formulas is to be preferred:

Given pg. Set s = f — Jpg, ro = J Tsq.
Forq=0,1,...
zg=M _l'r,,
Ug = Zg + Pauq—1
Bg = qu"q/qu-—l"q—l
Po=10
v, = Ju,
Tgt1 = Zg + gy
ag = qurq /'vquq
8g+1 = 8¢ — Qq¥q
Tg+1 = JT9q+l,
Next q.
Here, M is some approximation to J7J.

The only remaining problem is how to generat‘e the preconditioning matrix M. When
the matrix J is available, then we would always use diag{J Ty } Otherwise, we could
use one of the diagonal preconditionings described in Chapter 5. They require a pah"

of vectors (u, Gu), or in this case (u, JTJu). When the linear algorithm is programmed

74

using the formulas above, the vector JTJu is not a natural by-product of the algorithm.)
However, if we compute the difference between the successive residuals

ror1 =1 = Jsq41— 8,)
= —a,JTJu,,

we are able to obtain the desired vector.

When the derivatives of the functions f; are available, it is also possible to solve the
full Newton equations (6.5.2) using a linear conjugate-gradient algorithm. If the matrix
J were sparse, then this algorithm could be preconditioned using JTJ. Otherwise, the

diagonal of JTJ or an approximation to it could be used.

75

7 Numerical Results

7.1. Introduction

In this Chapter we discuss the numerical behavior of several of the methods dis-
cussed earlier. It was not feasible to test every combination of techniques that has been
described, but we have attempted to ascertain through selective testing the most promis-
ing vevr\sion of a truncated-Newton algorithm for general usage. The method used to
compare algorithms consists of applying them to a set of test problems. We do not claim
that this is a completely satisfactory means of comparison, but we believe that, if the
test problems are selected careflully, the evidence obtained can be a valuable aid in the
selection of the best algorithm.

This method of testing -has many drawbacks. One difficulty is the volume of data
that subsequently needs analyzing. We have displayed the raw data together with an
aggregation of the results. Too much emphasis, however, should not be placed on the
aggregated numbers since théy are unduly weighted by the mére difficult problems. An
alternative form of display is to enter as 1 the best result and have all other entries be
their multiple of this result. The drawback to this method is in our view more serious
since greater emphasis is then placed on problems that are easily solved.

The popularity and success of battery testing is largely due to the fact that for many
algorithms the differences in results are so large as to leave little doubt as to the correct
conclusion. It is also a useful technique for demonstrating that an algorithm is poor. The
converse,however, is not always true. If an algorithm fails where others easily succeed it
demonstrates a flaw in that algorithm. If an algorithm is simply a little slower or faster

then this could merely be due to the luck of the draw.

7.2 The assessment criterion

All optimization software requires a criterion for terminating the computation of the
sequence {z(")}. Ideally, if we wish to measure tho_a comparative efficiency of routines we
should set the same termination criterion in all the routines tested and then compute
the cost of a minimization, in terms of the number of function evaluations for instance.
However, therc is no universal agreement on what is the best termination criterion and.
a different criterion used by another researcher may result in a wide w./ariation in the

76

accuracy of the answer obtained. The question remains, therefore, as to the pqint at
which we should assess the efficiency of the various methods. The assessment criterion

used here is to take the first point z(¥) for which
) F®) — F(z") < 7(1 + [F(z"))), : (7.2.1)

where 7 is a scalar. Some authors have argued against the use of (7.2.1) because it includes
F(z*), which is unknoWn on real problems. We belicve that such autﬁors are confusing an
assessment criterion, where the use of F(a:*) is legitimate, with a termination criterion,
where it is not.

If the criterion (7.2.1) is to give a realistic assessment of the performance of an
algorithm, the choice of 7 must give a point z(*¥) which is close to a final estimate of z*
obtained with a realistic termination criterion. The relative performance of algorithms
with superlinear convergence is almost invariant with the choice of 7 and a very small
value can be used. For cxample, on an IBM 370/168, where the function can be computed
to approximately fifteen decimal places in double precision, a reasonable choice of 7 is
10~19, However, for conjugate-gradient type methods, which exhibit a linear rate of
convergence, the performance can vary widely with the choice of 7. It is not unusual
for the number of function evaluations to be three times greater for 7 = 10~1° than for
7 = 1075, In this case it is important that a modcrate termination criterion be used. In

all the tests carried out for this study, 7 was set at 10~5.

7.3 The algorithms tested

The results of this chapter, in addition to exhibiting the performance of a variety of
truncated-Newton algorithms, illustrate the numerical behaviour of three algorithms for

general unconstrained minimization. These are:
1. Algorithm PLMA

Diagonally preconditioned two-step BFGS formula with accumulated step (see Gill
and Murray [1979]).

2. Algorithm MNM

A modified Newton method using first and second derivatives (see Gill and Murray

[1974a)).
' 77

3. Algorithm QNM .

A quasi-Newton method using the full n X n BFGS update of the approximate
Hessian Matrix (sec Gill and Murray [1972]).
The use of these accepted and widely-tested algorithms gives us an objective test of the

overall effectiveness of our truncated-Newton methods.

7.4 The test examples

The provision of suitable test problems is extremely difficult. Problems that are
used to measure the efficiency of algorithms for small dense problems are complet'eI'y
unsatisfactory since the algorithms considered here are intended mainly for large-scale
problems. For example, it is pointless to test a truncated-Newton method on a very small
problem since the algorithm will be effectively performing a full Newton iteration.

A serious difficulty with using very large test problems is that, for all but the most
trivial examples, the CPU time necessary to compute the objective function will be very
large. This is typically the case if we attempt to use real-world problems for testing
purposes. Moreover, it is desirable that problems be defined in such a way that they
may be used by other researchers. Large-scale real-world problems almost invariably are
written in a non-portable form or can be run only with vast quantities of numerical data.

In this study we have attempted to compromise on these issues by collecting a set of
non-trivial problems that can be run with moderate ease at other installations. Eighteen
problems are considered. Of these, 16 problems are of dimension 50 or greater and 7
problems are of dimension 100. It is necessary to present an extensive number of results
because the performance of conjugate-gradient-type methods is generally erratic. If we
are to identify which strategy gives a true improvement in performance, a wide spectrum
of results must be considered.

The test examples may be separated into two classes. The first class contains
problems whose Hessian matrixi at the solution has clustered eigenvalues; the second
contains problems whose Hessian matrix has an arbitrary eigenvalue distribution.

Example 1. Penl (Gill, Murray, and Pitfield [1972])

F(z)=a i(z.- -1)% + b(f: z? — %)2

t=1 =1

78

The solution varies with n, but T, = Zipy, t = 1,...,m — 1. All the runs made
were with @ = 1, b = 1073, With these values, the Hessian matrix at the solution
has n — 1 eigenvalues O(1) and one eigenvalue O(1073). The Hessian matrix is full
and consequently, for large values of n, conjugate-gradient type methods are the only
techniques available.

Example 2. Pen2 (Gill, Murray, and Pitfield [1972])

Fz)=a i((e:i/m + ez.-_,/ld _ c‘_)"’ + (ez;/lo _ 6-1/10)2)

$==2
2

n o 2 1\2
+b((‘=2:l(n—z+l)z‘- - 1) +(z1 - ‘5")))
where ¢; = €'/10 4 ¢(i=1)/10 for § = 2, ..., n. The solution varies with n, but z; = Tity
for i =1,...,n — 1. This example was also run with a = 1 and b = 10~3. For these
values the Hessian matrix at the solution has n — 2 eigenvalues O(1) and two eigenvalues

O(1073). The Hessian matrix is full.
Example 8. Pen3 (Gill, Murray, and Pitfield [1972])

n—2
F(z) = a{l + e*» Z (2 + 22549 + 102,40 ~ 1)2
=1
n-—2 . -2
+ (Z (s + 2zi41 + 10245 — 1)2)CZ (22; + 2oy — 3)2)
=1 =1
. n—2 .
+ e*n-1 Z (22:,' + Zipq — 3)2}
=1
n 2 n/2 9
(Lt) + Y1)
t=1 =1

At the minimum, this function has n/2 eigenvalues O(1) and n/2 eigenvalues O(10~2).
The Hessian matrix is full.
The remaining examples have arbitrary distributions of eigenvalues at the solution.

Example 4. Chebyquad (Fletcher [1965])

Flz) =Y fi(z)?,
=1
where
1 . 1 n . .
fi(a:)=/(; T"(Z)dz—;ZT"(Zi), i=1,...,n, .

=1

79

and T:(z) is the itM_order shifted Chebyshev polynomial. The Hessian matrix is full.
- Example 5. GenRose
This function is a generalization of the well-known two-dimensional Rosenbrock

function (Rosenbrock [1960]).

F(z)=1+ i(lOO(z; — 22)+ (1 - z)?).

§=2
Our implementation of this function differs from most others in that F(z) is unity at
the solution rather than zero. This modification ensures that the function cannot be-
computed with unusually high accuracy at the solution and is therefore more typical of

practical problems. ’)

The next three examples arise from the discretization of problems in the calculus of
variations. Similar problems arise in the numerical solution of optimal control problems.

The general continuous problem is to find the minimum of the functional

J(z(t)) = /0 It =(t), ='(t)) dt,

over the set of piecewise differentiable curves with the boundary conditions z(0) = a,
z(1) = b. If z(¢) is expressed as a linear sum of functions that span the space of piecewise
cubic polynomials then minimization of J becomes a finite-dimensional problem with a
tri-diagonal Hessian matrix.

Example 6. Call (Gill and Murray [1973a])

J(=(t)) = /0 {ﬂv(t)2 + 2/(£) tan™ /() — log(1 + z,(t)z)%} at,

‘with the boundary conditions z(0) = 1, z(1) = 2.
Example 7. Cal2 (Gill and Murray [1973a])

1
J(z(t) = /0 {100(:c(t) ~2®?)*+(1- z'(t))z}dt,
with the boundary conditions z(0) = z(1) = 0.
Example 8. Cal3 (Gill and Murray [1973a])

J(z(t)) = ./'01 {e”"""(":)’(:lz'(t)2 - 1)} dt,

80

with the boundary conditions z(0) = 1, z(1) = 0.
Example 9. QOR (Toint [1978])

P = Y aat+ L a(4- 3 5t X),

i=1 i=1 JEA(Y) JEB(s)
where the constants a,, B, d; and sets A(i) and B(z) are described in Toint’s paper. This
function is convex with a sparse Hessian matrix.

Example 10. GOR (Toint [1978])

50 33
F(z) =" ei(z:) +) bilws),
=1 =1
where :
- |osz;log, (1 + x;), z; >0,
c,-(z,- =
—ayz; log, (1 + =), z; < 0,
% =d; — Z z; + E z;
JEA() JEB(Y)
and

bi{as) = {ﬁiy? log(1+w), %20,
_ Biv?, ¥ <0.
The constants oy, B;, d; and sets A(¢) and B(z) are defined as in Example QOR. This
function is convex but there are discontinuities in the second derivatives.

Example 11. ChnRose (Toint [1978])

25
Flz)=1+ Z (4ei(zio1 — 25)% + (1 — 2:)),

i=2
where the constants oy are those used in the example QOR. The value of F(z) at the

solution has been modified as in Example 5. The Hessian matrix is tri-diagonal.

7.5 Starting points

The starting points used were the following.

Start 1

Start 2

T
2@ = 1 2 ey — .
C\n+1U'n4+1""n+1

Start 3

2@ =(1,-1,1,-1,...)7.

Start 4

20 = (~1,-1,...,-1)7.

7.6 Description of the tests

All the algorithms are coded in double-precision Fortran IV. The runs were made on
an IBM 370/168, I;or which the relative machine precision, ¢, is approximately 1015,

Each algorithm requires two additional user-specified parameters: \, the bound upon
the change in z at each iteration, (the quantity ||z(¥+1) — 2(¥)||,) and F.,,,, an estimate
of the value of the objective function at the solution. For all problems, the value of A
was set at 10, and F,,; was set to the value of F(z) at the solution.

For the initial testing, a limited set of test functions was used. This set includes: Pen1
(N = 50, Start 3), GenRose (N = 50, Start 2), Call (.N = 50, Start 1), and Chebyquad
(N = 20, Start 2). These four functions have quite different behavior, and it was found
that performance on these test functions was often indicative of the performance of an
algorithm on the complete battery of test 'functions. For these limited tests, only the
value # = .25 was used and an time limit of 15 seconds was placed on each test run.

In order to determine a “good” truncated-Newton algorithm and also to compare the
performance of this good truncated-Newton algorithm against better-known algorithms,
more complete tests were carried out. The complete set of test functions was used, and
the values n = .25, .1,.001 were tried. Many of thgse numerical results were obtained by
Gill and Murray [1979]. Since the optimal value of 7 is often larger for algorithms which
use second-derivative information, a series of tests with n = .5,.7,.9. was also carried
out. Finally, a special set of comparisons against Newton’s mecthod was done. |

The full set of results is contained in the tables in the appendix. Each entry in a

82

table consists of a pair of values: the first is the number of non-linear iterations rgquired _
'~ to find the solution, the second is the number of function/gradient evaluations (unless
otherwise indicated, this number includes the function evaluations in the linesearch as
well as those used to compute the matrix-vector products in the linear sub-algorithm). A
number of the test functions have sparse Hessian matrices, and in these cases it is possible
to use sparse finite-differencing to compute these matrices at the beginning of each non-
linear iteration. A lower-case “s” at the end of a function name (for example, GenRs)

indicates that sparse finite-differencing is being used. (The routines for computing the

sparse Hessian matrices were developed by Thapa [1980].)

7.7 Discussion of results

The first tests were used to determine the better preconditioning strategies. These
are summarized in table 1. The routine used was a preconditioned Lanczos algorithm
with forcing function (4.3.6) and the standard forcing sequence (4.4.3). PLMA was the
non-linear outer algorithm. The terms used to describe the preconditioning strategies
correspond to section 8.2.3; the letters DNC indicate that the algorithm did not converge
in 15 CPU seconds.

The results indicate that the diagonal preconditionings are the most effective. The
exact diagonal of the Hessian often performs very well; the only exception is for the
function GenR, where the Hessian matrix is frequently indefinite. A better strategy for
handling negative diagonal elements might improve the result in this éase (for these runs,
negative diagonal elements were replaced by their absolute value).

Tables 2 and 3 show the effects of different forcing sequences. The exact BFGS
diagonal preconditioning was used in combination with the routine described for table
1. Table 2 was made using the forcing function (4.3.6) and table 3 with function (4.3.5).
The tests in table 2 follow naturally from the discussion in section 4.4; those in table 3
were made because the standard forcing sequence (¢ = min {1/k, ||g(¥||}) was found to
be too stringent in combination with function (4.3.5).

Our experience with alternative forcing sequences has been inconclusive; the tests in
Table 2 were included to show how well they sometimes performed on specific functions.
The standard forcing sequence is quite effective for the class of problems chosen. Table
3 shows that scaling this forcing sequence by 1.5 is worthwhile when function (4.3.5) is

83

being used. _

Tables 4A-4E were used to choose the optimal truncated-Newton routine. The three
approximate diagonal preconditionings were used on all test problems with # = .25 in
combination with the following routines:

1. TN1—a preconditioned Lanczos algorithm with the standard fore-

ing sequence and forcing function (4.2.2),

2. TN2—a preconditioned Lanczos algorithm with the standard fore-

ing sequence scaled by 1.5 and forcing function (4.3.5),

3. TN3-—as in TN1, but with forcing function (4.3.6),

4. MINR—a preconditioned MINRES algorithm.
All routines use PLMA as the non-linear outer algorithm. The numbering of the precon-
ditionings corresponds to the list in section 8.2.3.

The totals from all the runs are listed in table 4E. The best routine could be decided

upon in a number of ways:
1. iteration count
2. function evaluations (regular)
3. function evaluations (sparse) -
4. function evaluations (total)
5. function evaluations (regular) plus iteration count
6. function evaluations (sparse) plus iteration coﬁnt
7. function evaluations (total) plus iteration count
With the exception of criteria 2 and 5 where TN2 PC=1 is best, the totals indicate that
TN1 PC=3 is the optimal routine.

In order to ascertain the overall effectiveness of truncated-Newton algorithms,
routine TN1 PC=3 (hereafter referred to simply as TN) was compared with PLMA,
MNM, and QNM on the full set of test functions for = .25,.1,.001. In addition, a very
simple truncated-Newton algoriﬂhm was cxamined both with and without an exact BFGS
diagonal preconditioning (sec section 8.3.2). These routines are referred to as PBTN and
BTN, respectively (the initials P and B stand for “preconditioned” and “basic”). The
results of these testg can be found in tables 5A-5E; NR indicates that a test was not run,
and NA that a total is not available.

As table 5E indicates, TN only requires 50% to 80% as many function evaluations

' 84

as PLMA to solve the full set of test problems. This seems a significant reduction. When
sparse finite-differencing is used, both PBTN and BTN can compare favorably with TN.
Without this feature, however, they are considerably slower. This is especially true of
the unpreconditioned routine BTN; a major factor is the performance of this routine on

the problem Call N = 100.

The set of tests summarized in tables' 6A and 6B shows the performance of routine
TN with different values of . Regardless of which performance measure is used, .25
is always the overall optimal value of # for this routine. The results were insensitive
to the various choices of 5. This is in marked contrast to PLMA. The main reason for
this insensitivity was that the initial step was close to the minimum along the search

direction.

The final set of tests, summarized in tables 7A and 7B, are a special comparison of the
truncated-Newton and modificd-Newton algorithms. When'TN and MNA were compared
in the tables 5, the work required to compute second-derivative information was ignored
for MNA but counted for TN, even though TN only computeé partial second-derivative
information whereas MNA computes the full Hessian matrix. In the tables 7, these
two routines are evaluated in a fairer way. It is assumed that, at the beginning of each
nonlinear iteration, the full Hessian is evaluated and then used either to solve the Newton
equations (in the case of MNA) or to compute the necessary matrix/vector products (for
TN). As a result, in the number pairs in the tables, the first number indicates the
number of Hessian matrices computed, and the second the number of function/gradient
evaluations used in the linear search. As the totals indicate, the truncated-Newton
algorithm requires fewer Hessian matrices as well as fewer function/gradient evaluations.
In fact, TN is almost twice as efficient as MNA. This is especially surprising since TN is a

routine designed for large-scale function minimization and not for general optimization,
like MNA.

7.8 A supplementary test problem

- Up until this point, all of the algorithms have been tested on a particular set of
test problems. This raises the question of whether a good truncated-Newton algorithm
has been found or whether we have just found the optimal algorithm for this set of
test functions. In addition, for practical reasons we have limited ourscl;res to relatively

85

small test functions (n < 100). For this reason, we now test algorithm TN on a.larger,
independent test example. .

The function is taken from Murtagﬁ and Saunders [1980]. It investigates the optimal
control of a spring, mass, and damper system. In its original form, the problem has a

quadratic objective function and a set of equality and inequality constraints:

T

] 1
min f(z,y,u) = 3 E z;

t=0

subject to
Tey1 = o + 0.2y,

Yer1 =y — 0.01y% — 0.004z; + 0.2,
~0.2 < u; <02
y: = —1.0
fort=290,...,T —1, and

zo = 10, Yo = 0, Yyr = 0.

The starting pbint used wasz; =0,y = -1 (t=0,...,T),and v, =0(t =0,...,T—
1). For these tests, T = 100, and so there are 302 variables in all.
Since this is a constrained optimization problem, and algorithm TN is only designed

to solve unconstrained problems, we minimize a related penalty function:
F(z, Y '“') = Pf(z; Y, u) + c'e.

Here, ¢ is a vector with one component for each constraint above. For example, ¢y =
z; — 29 — 0.2y0. If ¢; is a component corresponding to an inequality constraint such as
y. 2> —1.0, then ¢; = 3y, + 1.0 if y, < —1.0, and ¢; = 0.0 otherwise. The parameter p is
a penalty coefficient; the smaller its value, the more stringently the constraints must be
satisfied. For our tests, p was set equal to 103, 105, and 10~7. The minimal value of
the objective function f subject to the given constraints is 1186.382.

Setting the penalty parameter p = 10~2 was not sufficient for our purposes, since
the minimum of the penalty function was quite different from the minimum of the original
functioﬁ; in this case, the final value of f was 729.2, not even close to the optimal value.
There were also problems with p = 107, but for quite different reasons. Recall that
the convergence criterion for the algorithm is given by (7.2.1), where 7 = 10~5. Here,
P fmin = p X 1186.382 = 1.2 X 1074, so that only two digits of the optimal function

86

value were obtained. _

For p = 1075, the final computed function value was f = 1.190.384, which is
close to the optimal value of the constrained function. The value of cZc, the square
of the norm of the constraint violations, was approximately 10~4. When second deriva-
tives were available to compute the matrix/vector products, algorithm TN required 168
function/gradient evaluations to minimize this penalty function. Murtagh and Saunders
[1980], using a projected Lagrangian algorithm, required 203 function/gradient evalua-
tions to obtain a solution with ¢Tc < 10~12. Although these two results are not directly
comparable, they do indicaté that the truncated-Newton algorithm is effective in solving
this problem. When the matrix/vector products were computed using finite diﬂ'erencing,
algorithm TN required 1727 function/gradient evaluations to minimize F'. If sparse finite-
differencing had been used to approximate the Hessian, 423 function/gradient evaluations
would have been used (each Hessian can be computed using five gradients).

There is reason to assume that truncated-Newton algorithms will in general perform
well on penalty functions. Because of the special form of F', the Hessian matrix will often
have two clusters of eigenvalues. The first, corresponding to the objective function p - f
will be O(p); the second, corresponding to the penalty term, will be O(1). The Lanczos
algorithm, applied to the soluton of the Newton equations, works well if the matrix has
only a few clusters of eigenvalues. Also, the Lanczos algorithm is able to quickly and
accurately approximate the extreme eigenvalues of a matrix (see Parlett [1980], section
12-5). Hence, if a truncated-Newton algorithm is applied to a penalty function, where at
cach stage the Newton equations involve a matrix whose eigenvalues fall into two clusters

at the ends of the spectrum, good performance should result.

87

8 Adaptiﬁg Truncated-Newton Methods

8.1. Introducton

When Truncated-Newton methods were presented in Chapter 3, the basic algorithm
was deliberately left vague. This was because there are many ways in which such an
algorithm can be implemented. At each step, a choice must be made about how a certain

result or effect is to be achieved.

Some possible choices were outlined, or at least mentioned, in the succeeding chap-
ters. In Chapter 3, algorithms for approximately solving the Newton equations were
developed. In Chapter 4, we described ways of terminating the linear algorithm. And in
Chapter 5, it was shown how the method could be preconditioned using other linear and

non-linear methods.

When designing a program for a specific computer, or when choosiﬁg a method to
solve a specific problem, decisions must be made about which method to use and how it
will be implemented. In the case of a truncated-Newton method, many rather detailed
options have to be selected in order to obtain a usable algorithm.

Often, the first question asked is which algorithm is the most efficient for solving the
given problem or a wide class of problems. Answers to this question are usually based on
numerical tests, which were the subject of Chapter 7. But this is not the only criterion
for sclecting an algorithm. Another important question is which method is most stable.
This question can sometimes be answered absolutely on the basis of theorctical results

from perturbation theory.

Many other questions arise because of more practical issues such as: (a) the expense
of computing the function being minimized, (b) the availability of second derivatives, (c)
the size of the computer, (d) the availability of routines in a program library, (e) the
number of times a problem is to be splved, ete.

Until recently, it was generally assumed that researchers would be working on a large’
central computer, and that professionally written'software would be available on-line in
a subroutine library. With the rise of the small-computer industry, this assumption is
now often false, and it is now necessary to take into account the effect of small machines
when designing algorithms. On a small computer, the size of the program can be as.
important a consideration as the size of the problem. This is not just Because storage

88

space is at a premium: numerical brogram libraries for small machines are still rare, and
the user must often write ilis own programs or manually input commercial programs.
Short and simple algorithms can greatly reduce the likelihood of error.

In addition, small computers are often owned by the user, and are generally used by a
small grou;; of people only. This means that a routinc considered slow in a large-machine
environment can be attractive if it offers a substantial reduction in storage requirements.
It could be left to run for long periods, for example overnight,lwith little inconvenience.
This can greatly influence the choice of an algorithm; the optimal routine for a large
machine can ha_ve little resemblance to the optimal routine for a mini-computer. -

We mentioned above several questions related to the actual problem being solved—
the difficulty of computing the function, and the availability of sccond-derivative infor-
mation, for example. Choosing a method based on these criteria often depends on the
efficiency of the method, and the choice must be made on the basis of numerical tests.
Some decisions, however, can be made a priori, such as general decisions about solving
the Newton equations and about how matrix/vector products are to be computed.

In order to simplify the process of choosing a specific algorithm, we summarize in
section 8.2 the possibilities for a truncated-Newton algorithm. There we list the choices
for each step of the algorithm, indicate opération and storage counts, describe possible
interactions with other modules in the method, and mention difliculties that might be
encountered in programming. In 8.3, a couple of sample situations are described, along
with suggestions about how to put together a truncated-Newton algorithm which is well-

suited to the needs of each case.

8.2. Choices for sub-algorithms

In order to specify a truncated-Newton algorithm, five sub-algorithms must be

selected. These are:
1. The algorithm to approximately solve the Newton equations (2.2.3).
2. The non-linear outer algorithm. |
3. The linear preconditioning strategy.
4. Thé termination criterion and forcing sequence for the linear algorithm.
5. The algorithm for computing the Hessian/vector products.
These sub-algorithms have been discussed at length in preceding chapters, but mainly

89

from a theoretical point of view. In this section, we shall take up issues which would
arise when programming and using truncated-Newton methods. '

In the succeeding sub-sections, we will examine each of these choices separately,
indicating operation and storage counts. The notation for vectors is global, so that
if a vector name appears in two sections, the same vector is being referred to and no
additional storage is required. Generally, all choices may be made independently, but
usually only one choice may be made from each section. Exceptions to this rule will be
noted as they occur.

For reference, here is a list of the vectors used below:

z the current estimate of the minimizing point F

p search direction

g gradient

Po initial search direction, used in Beale’s method

D vector which represents diagonal preconditioning matrix

D, temporary value of D
E represents sub-diagonal of preconditioning matrix
E, temporary value of E

8¢ scratch vectors

8.2.1. Approximately solving the Newton equations

We shall consider six ways of approximately solving the Newton equations (2.2.3):

1. conjugate-gradient (section 2.4)

2. preconditioned conjugate-gradient (Concus et. al [1976])

3. Lanczos (sections 3.3-3.5)

4. preconditioned Lanczos (sections 3.3-3.6, 3.8)

5. MINRES (section 3.7)

6. preconditioned MINRES (sections 3.7-3.8) ‘
The storage requirements and operation counts for these methods are summarized in
Table 8.1 below. Some problems that might be encountered when using these methods
are also mentioned briefly there. For the reasons given in section 3.2, SOR-related
methods will not be examined. Clearly, only the preconditioned algorithms can be used
in combination with a non-lincar algorithm or a linear preconditioning scheme.

90

The conjugate-gradicnt algofithm is the simplest algorithm that we consider feasible
for solving the Newton equations. Unfortunately, the conjugate-gradient method is only
designed to solve systems of equations with positive-definite matrices. In an optimization
setting where the Hessian matrix in the Newton equations can be indefinite, this is a
serious deficiency; but if a given problem is known to have a positive-definite Hessian
everywhere, this may not matter. When tfle Hessian is indefinite, the conjugate-gradient
method may be unstable. The addition of preconditioning can greatly improve the
performance of this method at little computational cost. Therefore, except under extreme
circumstances, a preconditioned conjugate-gradient method is always to be preferred over

the regular conjugate-gradient method.

ALGORITHM STORAGE OPERATIONS COMMENTS

conjugate-gradient (cg) P, 81 — 83 | 8n, - only for positive-

matrix-vector product definite systems

preconditioned cg P, 81— 84 | 8n, only for positive-
matrix-vector product, | definite systems

preconditioning step

Lanczos D, 81— 84 | 12n, complex to program

matrix-vector product

preconditioned Lanczos p, 81— 85 | 12n, complex to program
matrix-vector product,

preconditioning step

MINRES P, 81— 85 | 16m, complex to program

matrix-vector product

preconditioned MINRES | p, 8; — sg 16n, complex to program

matrix-vector product,

preconditioning step

Table 8.1 Choices for the linear algorithm

In order to be able to treat indefinite systems of equations, it is possible to use
a method based on the Lanczos algorithm for tridiagonalizing a symmetric matrix.
It is slightly more expensive to use than the conjugate-gradient method; it is also
more complex to program since it involves thrce separate sub-algorithms: the Lanczos‘
tridiagonalization, the modified-Cholesky factorization, and the conj ugaté-gradient step.

91

In a general setting, though, it is a stable and predictable way of handling ind_eﬁnite
Hessian matrices, which is ﬁot true of the conjugate-gradient algorithm. Again, it is easy
to add a preconditioning step.

The MINRES algorithm is a variant of the Lanczos algorithm which guarantees that
the norm of the residual decrcases at each iteration. It is based on a QR factorization
of the tridiagonal matrix resulting from the Lanczos process. Programming this method
is comparable to programming the Lanczos method above, and it is equally easy to

precondition the algorithm.

8.2.2. Non-linear algorithms

We shall look at five non-linear outer algorithms:

1. linesearch (section 1.4)

2. non-linear conjugate-gradient (section 2.4)

3. Beale’s method (Gill and Murray [1979)])

4. limited-memory quasi-Newton (section 2.5, Gill and Murray [1979])

5. quasi-Newton (section 2.3)
Describing a linesearch as a non-linear outer algorithm may be something of an over-
statement. We are referring to the following method: 1) approximately solve the Newton
equations at the current point to compute a search direction, 2) use this search direction

in the linesearch to compute a new point.

ALGORITHM STORAGE OPERATIONS COMMENTS

linesearch P02z, 8 2> 3n, difficult to program
non-linear cg D g 3n —4n, requires a linesearch
Beale’s method P, Po, 9 8n — 10n, requires a linesearch
limited-memory P, 9, 81 — 82k | k(k+1)/2 X requires a linesearch,
quasi-Newton method (one update) may be preconditioned
(k updates) '

Table 8.2 Choices for the non-linear algorithm

With the exception of the line-search, all of these algorithms are used to generate
a preconditioning for the linear algorithm, i.e. the formulas for the outer algorithm

92

implicitly describe some linear operator which can then be applicd to any vector. Thus,
these algorithms can be used only with an algorithm which can be preco;lditioned. Trust-
region methods could also be used as non-linear algorithms for a truncated-Newton
code, but they will not be discussed here. A summary of operation counts and storage

requirements can be found in Table 8.2 above.

A linésearch is the simplest algorithm that is quaranteed to converge that could be
used for the non-linear outer iteration in a truncated-Newton code; also, a linesearch will
be a part of all the other algorithms to be described in this sub-section. Thus, such an
algorithm would be central to any program using a linesearch stategy. The operation
count is difficult to estimate, since it will depend on how many guesses are needed to
“sufficiently decrease” the value of thé objective function. If k guesses are used, then
(2k + 1)n operations and k lunction-gradient evaluations will be required. For many
problems, k& will be equal to 1 as the minimum is approached. Our numerical tests have
indicated that truncated-Newton methods compute well-scaled search directions, and
that k is often equal to 1 when the Hessian matrix is positive-definite. An efficient linear
search can be difficult to program, but sample programs are often found in program

libraries and even on pocket calculators.

The simplest way to generate a preconditioning for the linear algorithm is to use
a non-linear conjugate-gradient algorithm. Beale’s method is a variant of a non-linear
conjugate-gradient algorithm in which the new search direction is computed using both

the most recent direction as well as the first direction.

Limited-memory quasi-Newton algorithms are almost as flexible as truncated-
Newton methods, because it is possible to choose both the type of quasi-Newton update
to use as well as the total number of updates. There is some evidence to indicate (see
Fenelon [1981]) that choosing k bigger than 2 is not economical. It should be noted that

a diagonal precondilioning can be added to this algorithm (scction 5.3).

It is also possible to consider using a quasi-Newton method to precondition the linear
algorithm. Unlike all the other methods considered in this section, quasi-Newton methods
have storage and operation counts which are quadratic, not linear, in n. For this reasoh,

it is difficult to imagine them being competitive with the other methods proposed here.

93

8.2.3. Linear preconditionings

Most of the preconditionings generated during the linear subiteration were discussed
in detail in Chapter 5. However, a few of them were only alluded to in passing. In this
sub-section we will consider the following options:

1. BFGS diagonal preconditioning: (section 5.3)
. rank-one diagonal preconditioning (section 5.3)
. exact BFGS diagonal preconditioning (sections 5.3 and 5.4)

. exact diagonal of the Hessian

2
3
4
5. tridiagonal preconditioning based on VTVT(section 5.5)

6. tridiagonal preconditioning based on R~TTR~! (section 5.5)

7. product of the tridiagonal preconditionings (section 5.6)

8. exact BFGS tridia:gonal preconditioning

9. exact BIFGS tridiagonal factors preconditioning
As in the previoué section, these options can only be used with a preconditioned linear
algorithm. Their operation counts and storage requirements are summarized in Table
8.3 below.

Because a new preconditioning is being developed while the old one is still in use,
two copies of the operator must be kept when using all but the fourth preconditioning
algorithm. Since the rank-one formula does not guarantee positive-definiteness for the
preconditioning, some strategy must be designed to rhodify the diagonal when negative
elements arise. The exact BFFGS formula requires a separate initialization step if a non-
linear preconditioning is also being used (sce section 5.3).

The two tridiagonal preconditionings (<;ptions 5 and 6 above) are very similar. They
have the same storage requirements, and the programs which implement them have only
minor differences. When using option 6, however, it is easy to re-orthogonalize the new
Lanczos vector using the projection matrix R. Loss of orthogonality can seriously degrade
the performance of conjugate-gradient and Lanczos algorithms; re-orthogonalization can
significantly improve stability and convergence.

- It is only possible to precondition using the diagonal elements of the Hessian if these
elements can be computed at little cost. If this is feasible, then this is a simple and
inexpensive preconditioning to use. If the Hessian is not positive definite everywhere,‘

some strategy must be devised to handle ncgative diagonal elements. They might be set

94

to some small positive value, or their absolute value might be used; it is also possible
to use the negative diagon:;.ls to compute directions of negative curvature. This latter
option could be used in place of the inner algorithm at the current iteration. A direction
of negative curvature could be computed immediately from the exact Hessian information

and used in the line search with litile cost.

ALGORITHM STORAGE OPERATIONS COMMENTS

BFGS diagonal D, Dy, 8 9n to update,
n to apply
rank-one diagonal D, D,, s 6n to update, may be indefinite
n to apply
exact BIFGS diagonal D, D, 8n to update, requires initialization
n to apply
diagonal of Hessian D ' n to apply may be costly to obtain,
' may be indefinite
tridiagonal VTVT 81 — Sgk+1 (4k + 1)n to apply, | requires long program
(k projectors) (k% + k)n to form
tridiagonal R—TTR™1 81 — 82k+1 (4k + 1)n to apply, | requires long program
(k projectors) (k% + k)n to form
tridiagonal product 81 — 82k+1 (4k + 1)n to apply, | requires long program
(k projectors) (k% + k)n to form

BFGS exact tridiagonal | D, Dy, E, E{ | 6n to apply, .| may be indefinite
14n to update '

Table 8.3 Possible preconditioning strategies

The next three preconditionings are considerably more complex and expensive to
apply than any of the other preconditioning strategies examined here. This is because
they involve the projected Hessians, and information about the projection matrices must
be computed and stored. There is also some choice about how much information will be
used; we assume here that k Lanczos vectors are needed, and that k is small in comparison
with n. 'Sincg these preconditionings use information from the Lanczos algorithm, they
cannot be used with the regular linear conjugate-gradient method.

It is possible to usc the correspondence between the quasi-Newton and linear
conjugate-gradient algorithms to generate not just the diagonal, but also the principle

95

#

subdiagonal of Hessian matrix. This method is almost as casy to program as the diagonal
preconditionings above; however, there is a problem with positivedeﬁn{teness. Although
the diagonal and the complete Hessian approximation can be guaranteed to be positive
definite, the tridiagonal submatrix may be indefinite, and some strategy must be derived

for modifying it in this case.

Because of the problem with indefiniteness for the preceding method, it would be
preferable to update the diagonal and subdiagonal of the Cholesky factor of the ap-
proximate Hessian. This would guarantee a positive-definite preconditioning. Unfor-
tunately, this is infeasible. An examination of the formulas for updating matrix faec-
torizations in Gill, et al. [1974] shows that updating a portion of the factorization other
than the diagonal requires knowledge of the complete factorization of the old precon-
ditioning. Even if this information were available, accessing it would be an O(n?) process.
Since the preconditioning is being updated at every linear sub-iteration, this method is
uneconomical. Because generally very few linear iterations are performed, even making

an update of this type once per outer iteration would often be impractical.

8.2.4. Termination criteria for the linear algorithm

In Chapter 4, we considered the following convergence criteria for the linear algo-

rithm:
L. |lgll/ g™l
2. |Qqs1— Qql¥/IQu|}
3. [Qq+1— Qql#/llg™®]|
4. |Qg41— Qal#/1Qq41|?

All of these formulas require 2n-3n operations to compute. In some cases, for example
criterion 1 in combination with a MINRES algorithm, they are a natural by-product of
the algorithm. When the Lanczos algorithm is used for the linear sub-iteration it may be
necessary to compute and store the residual in order to apply these tests. They are all
easy to program. The choice of a forcing sequence (see section 4.4) can be made solely

on the basis of numerical tests.

96

8.2.5. Computing matrix/véctor products

There are three principle methods of obtaining the matrix/vector products Gp

required during the linear sub-iteration. They are:

1. finite differencing along p

2. computing G using (sparse) finite-differencing (section 2.5)

3. computing G
Which method is used depends on the function being minimized; it does, however, have
an important bearing on the remainder of the algorithm. If the Hessian is difficult to
compute, or is large and dense, then finite differencing along p may be the only option
available. This discourages the use of a large number of linear-subiterations since an
additional gradient evaluation is required for each matrix/vector product. For problems
where the function and its first and second derivatives are inexpensive to compute relative
to the cost of solving the linear system, we would again perform few linear iterations, as
the cost of the lineér sub-algorithm would dominate the cost of the function and gradient
evaluations. »

When G is available and the function is moderately expensive to compute, a larger
number of inner iterations would be encouraged. In this case, the cost of computing the
function and its derivatives dominates the cost of the linear sub-iteration and is the same
at every non-linear outer iteration.

Unfortunately, few absolute statements can be made about choosing this segment of
the truncated-Newton algorithm; a decision should be made in the context of a specific

problem or class of problems.

8.3. Choosing a complete truncated-Newton algorithm

In this section, we will describe what we consider to be the two extreme versions

of a truncated-Newton algorithm. The decisions made about the construction of the

complete algorithm are based mainly on the size of the machine being used—either very
small or large. The ideas used to describe each of these situations can be easily applied

to more specialized cases.

In the introduction to this chapter, we mentioned a number of issues which might

affect the choice of a particular algorithm:. Some of these involved the function being

97

o

minimized. Although a truncated-Newton algorithm can be used for general optimiza- .

tion, we consider that it wi.ll be most useful for large-scale minimization problems.

In this context, we take “large-scale” to mean that it is difficult to use second-
derivative information. This might be because the dimension of the problem is large,
in which case storing or factoring the second-derivative matrix is impossible. It might
also mean that the Hessian matrix is expensive to compute or is unavailable. A further
possibility is that the Hessian matrix may be expressed as th.e product of several large
sparse matrices, and it is uneconomical to obtain its elements explicitly (this is the case

in large constrained optimization problems (see Chapter 6)).

8.3.1 The large-machine case

When working on a large machine, the only important consideration is efficiently
finding the solution to the problem in a stable manner. All the necessary algorithms are
assumed to be ‘prol'essionally coded and available in a program library, and the size of the
program is not an issue (since it is pre-compiled in an object-code library). The length
and complexity of the algorithms are not factors in any decision. However, the storage
requirements for the method (the number of vectors required) are still important.

Thus, a preconditioned Lanczos algorithm should be selected to approximately solve
the Newton equations. Alternatively, a preconditioned MINRES algorithm might be
chosen if it could be shown to be more effective for the class of problems being solved;
when terminated using ||r,||, MINRES is almost as efficient as a Lanczos method. As
a non-linear algorithm, we would probably select a two-step diagonally-preconditioned
limited-memory quasi-Newton method. Such an algorithm has been shown to be efficient
and cost-effective for large optimization problems (see Gill and Murray [1979], Fenelon
[1981]), and has performed well in our numerical tests here.

We would choose one of the diagonal preconditioning schemes to precondition the
linear algorithm. They all have low storage requirements and are incxpcnsive to generate.
The tridiagonal preconditioning schemes are considerably more expensive to use and less
successful in practise; they would have to perform much better in numerical tests before
they could be recommended for general use. Our results indicate that the exact BFGS
diagonal preconditioning is the most effective of the diagonal schemes. This choice is

based on numerical'tests, storage requirements, and the stronger theoretical justifications

98

for this scheme. Since we are unconcerned about the length of the program, it wouldv
be possible to include preconditioning with the diagonal elements of the Hessian as a

user-specified option when these elements can be computed easily.

The other options for the algorithm (the termination criterion and the forcing
sequence) would be chosen on the basis of numerical tests. It would depend somewhat on
the other choices made for the algorithm. The method used to compute matrix/vector

products could be chosen by the user of the code at run-time.

8.3.2 The small-machine case

The major difference between the small- and the large-machine cases is that the size
of the program is now a factor in the choice of the algorithm. It is impossible to store a
large code in the memory of a. small machine. For this reason, simple iterative methods
are often preferable to direct methods for solving many problems. Alsb, because the user
is often not paying for computer time, and time-sharing is not in effect, storage can be
a more important issue than speed in the choice of an algorithm.

Another reason to favor simple and short algorithms is that a small computer will
not usually come complete with a progfam library. The user must either write his own
programs, or at least may be obliged to input the program by typing. In order to decrease
the probability of error, and also to reduce the overall time needed to solve a problem,
easy-to-program methods are preferred. ‘

For these reasdns, a preconditioned conjugate-gradient algorithm could be chosen to
approximately solve the Newton equations. In extreme cases, the precondilioning step
could be omitted; it is, however, a simple addition to the program and it can greatly
speed convergence. A linesearch could be chosen as the non-linear algorithm. Because
of possible(indeﬁniteness, the search direction p should be monitored at every linear
iteration to insure that it is a descent direction. Although a simple non-linear conjugate-
gradient method is easy to add; effective methods of this type include such features as
restarting strategies which can increase the complexity of the code.

As in the large-machine case, a diagonal preconditioning should be used, unless
storage is at such a premium that no preconditioning can be included. The limitations
of the small machine do not seriously affect the choice of the termination criterion and
the forcing sequence. The matrix/vector products would probably be cémputed by finite

99

differencing along p, for reasons of simplicity.

The analysis of these two special cases gives some indication of how a truncated-
Newton algorithm can be adapted to a specific computing environment. Final decisions
about preconditioning and termination rules must be made on the basis of numerical
tests. Some recommendations were made on the basis of the results in Chapter 7. When
solving specific classes problems in special environments, though, some of the detailed

choices might be made differently.

100

be useful in interpreting the tables given here.

Appendix

Table 1—Comparison of preconditioning strategies using a subset of the test functions.

The following tables summarize the results of the tests discussed in section 7.7. Chapters 7 and 8 may

Preconditioning Penl GenRs GenR Calls Call Cheb
Rank-2 D 7 32 33 183 33 315 12 94 12 191 8 83
Rank-1 D 7 32 34 192 34 338 13 101 13 236 8 84
BFGS D 7 32 34 188 34 316 12 93 12 194 9 0
Exact D 5 24 39 224 39 355 11 78 11 83 8 77
vTVT DNC DNC DNC DNC DNC 17 232
R~TTR! 8 40| bpNeC DNC DNC DNC 21 230
Product T 10 57| bpnNc DNC DNC DNC DNC
BFGS T 10 174 41 223 41 321 12 93 12 181 14 181

and the forcing function (4.3.6) is being used.

Table 2—Comparison of forcing sequences {4, } using a subset of the test functions. ¢; = min {1 /k, ||g(")||},

Forcing Sequence Penl GenRs GenR Calls Call . Cheb

. v =.5 8§ 42 39 204 - 39 247 29 213 29 164 9 56
Y = .1 8 44 32 175 32 297 8 59 8§ 164 7 83
Y = .05 8 44 35 207 35 427 7 51 7 172 6 79
thr = .01 8 45 33 197 33 149 5 38 5 140 10 152
¥ = max{¢y, .5} 7 31 41 223 41 275 31 226 31 169 g 58
¥r = max{¢x,.1} 7 32 34 188 34 301 13 99 13 180 9 179
¥x = max{¢x, .05} 7 32 35 191 35 317 12 93 12 173(. 9 90
¥x = max{¢x, .01} 7 32 34 188 34 316 12 93 12 194 g 101
MAXIT=5 7 32 35 181 35 235 | pne DNC . 11 69
MAXIT=10 7 32 35 194 35 316 19 141 19 189 9 79
MAXIT=15 7 32 34 188 34 316 15 113 15 187 9 92
MAXIT=20 7 32 34 188 34 316 14 106 14 201 9 91

101

Table 3—Comparison of forcing sequences {; } using a subset of the test functions. ¢x = min {1 /k, “g(")”},
and the forcing function (4.3.5) is being used.

Forcing Sequence |, Penl GenRs GenR Calls - Call Cheb

Y = 1.0¢ 7 32 37 207 37 391 10 77 10 177 11 130
P = 1.5¢% 7 32 35 183 35 342 10 77 10 163 8 80
¢ = 2.0 7 32 34 190 34 344 11 88 11 181 10 96
i = 2.5¢x 7 32 38 210 38 402 11 84 11 168 "8 59
Y = 3.0¢; 7 32 38 205 38 347 13 102 13 164 10 90

Tables 4—Comparison of a number of truncated-Newton routines with various diagonal preconditionings.

The full set of test functions is used with 9 = .25.

Table 4A—Sma.ller functions. Differencing along search direction.

Function PC TN1 TN2 TN3 MINR

" Penl 1 7 29 7 32 7T 32 7 38
Start 3 2 7 29 7 32 7 32 7 38
n = 50 3 7 29 7 32 7 32 7 39
Pen? 1 11 .55 10 56 10 57 16 . 93
Start 3 2 10 49 10 56 10 56 17 100
n = 50 3 11 64 10 58 10 59 17 102
Pen3 1 10 49 10 47 9 39 10 53
Start 3 2 10 54 10 48 9 45 11 67
n =250 - 3 10 47 10 47 10 45 11 66
GenR 1 31 370 34 383 33 315 37 245
Start 2 2 32 417 36 519 34 338 38 435
n = 50 3 31 330 35 342 - 34 316 36 329
Calt 1 9 176 10 175 12 191 11 182
Start 1 2 10 273 10 191 13 236 11 235
n = 50 3 10 199 10 163 12 194 12200
Cal2 1 7 70 6 58 9 69 11 103
Start 1 2 8 87 8 79 10 84 11 141
n = 50 3 7 69 7 66 | 10 86 9 80
Cal3 1 7 112 9 99 |. 10 122 8 97
Start 1 2 -7 107 11 96 11 127 9 124
n =50 3 7 112 11 101 11 114 9 123

102

Table 4B—Larger functions. Differencing along search direction.

Function PC TN1 TN2 TN3 MINR
Penl 1 2 1 2 11 2 1 2 12
Start 3 2 2 11 2 11 2 1 2 12
n=100 ‘| 3 2 11 2 11 2 11 2 12
Pen2 1 6 33 5 24 5 27 6 36
Start 3 2 6 32 5 24 5 27 6 36
n = 100 3. 6 29 5 25 5 26 6 42
Pen3 1 - 11 68 10 61 10 59 11 69
Start 3 2 11 115 11 99 10 59 11 64
n = 100 3 11 65 10 58 10 64 11 62
GenR 1 61 764 63 754 61 683 65 610
Start 2 2 63 1090 64 1046 68 979 65 653
n = 100 3 57 684 682 796 64 672 67 1183
Call q 11 413 10 302 14 335 12 351
Start 1 2 10 511 12 521 18 483 14 464
n = 100 3 10 409 11 332 15 375 16 1228
Cal2 1 7 154 7 115 ‘11 141 12 166
Start 1 2 9 219 7 142 13 140 15 318
n = 100 3 8 117 6 107 11 131 10 407
Cal3 1 7 154 13 194 13 199 10 237
Start 1 2 7 171 11 220 14 232 11 259
‘n =100 3 7 159 16 229 14 207 11 498
Table 4C—Miscellaneous smaller functions. Differencing along search directions.
Function PC TN1 TN2 TN3 MINR
Cheb 1 8 74 8 83 8 83 10 79
Start 2 2 8 72 8 89 8 84 10 94
n =20 3 7 53 8 80 9 91 10 81
QOR 1 6 25 6 25 6 24 7 32
Start 1 2 6 25 6 24 6 25 7 34
n =50 3 "6 25 6 24 6 24 7 38
GOR 1 7 56 - 8 65 8 60 9 77
Start 1 2 7 59 8 87 8 68 9 80
n =50 3 7 60 8 65 8 57 9 111
ChaR ‘1 14 96 14 96 15 106 16 117
Start 4 2 14 156 15 133 15 154 15 122
n=25 3 11 77 12 77 12 77 16 151

103

Table 4D—Sparse finite-differencing.

Function PC TN1 TN2 TN3 MINR

GenRs 1 31 179 34 193 33 183 37 187
Start 2 2 32 190 36 204 34 192 38 195
n =50 3 31 168 35 183 34 188 36 184
GenRs 1 61 357 63 356 61 348 85 339
Start 2 2 63 367 84 376 68 409 65 326
n = 100 3 57 335 62 348 64 379 67 356
Calls 1 9 N 10 77 12 94 11 87
Start 1 2 10 78 10 77 13 101 11 89
n =50 3 10 - 78 10 77 12 93 12 94
Calls 1 11 85 10 81 14 109 12 98
Start 1 2 10 78 12 95 18 139 14 109
n = 100 3 10 79 11 89 15 120 16 125
Cal2s 1 7 50 6 43 9 64 11 71
Start 1 2 8 57 8 57 10 71 11 81
n = 50 3 7 50 7 50 10 71 9 68
Cal2s 1 7 50 7 &1 11 78 12 88
Start 1 2 9 64 7 50 13 92 15 111
n = 100 3 8 57 8 44 11 78 10 73
Cal3s 1 7 b0 9 64 10 71 8§ 60
Start 1 2 "7 50 g 64 12 85 9 67
n =50 3 7 b0 11 78 i1 78 g 69
Cal3s 1 7 50 13 92 13 92 10 _ .76
Start 1 2 7 50 -11 78 14 99 11 83
n = 100 3 7 50 16 113 14 99 11 81
QORs 1 6 55 6 55 6 55 7 64
Start 1 2 6 55 6 55 6 55 7 64
n = 50 3 6 &5 8 55 6 &5 7 65
GORs 1 7 64 8§ 73 '8 4 9 84
Start 1 2 7 64 8§ 173 8§ 74 9 85
n = 50 3 7 65 8§ 73 8§ 173 9 83
ChaRs 1 14 74 14 74 15 77 16 79
Start 4 2 14 77 15 79 15 81 15 74
n =25 3 11 56 12 58 12 58 "16 81

not available.

Table 4E—Totals. To compute the sparse totals, non-sparse results were used whenever a sparse result was

Function PC TN1 . TN2 TN3 MINR
Totals 1 222 1404 232 1473 243 1553 260 1613
sparse 2 227 1492 239 1567 262 1712 269 1695
3 215 1341 236 1479 250 1620 266 1683
Totals 1 1222 2709 232 2580 243 2553 260 2597
regular 2 227 3477 239 3417 262 3180 269 3276
3 215 2539 236 2613 250 2581 - 266 4752

104

Tables §—Comparison of various truncated-Newton routines against other optimization algorithms. All -

test functions are used with y = .25,.1,.001.

Table 5A—Smaller functions. Differencing along search direction.

-,

Function | 9 PLMA QNM MNA TN PBTN BTN
Penl .25 22 53 27 33 17 18 7 29 10 46 10 48
Start 3 1 8 27 8 26 9 25 7 30 10 48 10 48
n=>50 [.001 8 32 8 3 7 29 3 19 8 40 6 40|
Pen2 .25 52 118 134 242 17 17 11 64 10 60 14 89
Start 3 .1 28 76 99 322 9 3 12 78 10 64 13 88
n =50 | .001 15 7 73 341 6 26 12 95 9 67 12 118
Pen3 25 40 76 67 135 40 44 10 47 11 60 10 62
Start 3 1 38 76 63 150 12 44 9 46 9 52 10 61
n==50 | .001 28 71 56 155 11 48 9 b4 10 63 10 72
GenR .25 108 201 128 287 62 202 31 330 42 584 33 499
Start 2 1 119 263 118 323 66 257 33 348 36 469 32 518
n =50 | .001 119 330 118 412 88 392 34 395 37 468 35 614
Call 25 194 366 | . 162 191 7 9 10 199 8 227 16 978
Start 1 1 204 401 89 214 6 11 9 158 8 232 17 1151
n =50 |.001 205 456 88. 269 6 17 9 166 | 7 252 13 787
Cal2 .25 64 106 28 52 4 4 7 69 7 104 8 133
Start 1 .1 61 118 28 54 4 4 7 69 7 104 8 133
n =50 }| .001 60 123 28 67 4 6 7 7 7 107 8 135
Cal3 25 80 152 90 114 6 6 7 112 7 125 7 206
Start 1 1 78 155 59 135 5 7 7 112 7 127 7 206
n=>50 | .001 77 161 59 161 5 11 7 113 7 125 8 289

105

Table 5B—Larger functions. Differencing albng search direction.

Function 7 PLMA QNM MNA TN PBTN BTN
Penl .25 17 40 NR NR 2 1 2 1 2 1
Start 3 1 2 9 NR NR 2 1 2 1 2 1
n =100 | .001 2 10 NR NR 2 12 2 12 2 12
Pen2 25 14 28 NR NR 6 29 6 26 6 25
Start 3 1 7 18 NR NR 6 30 .5 23 5 24
n = 100 | .001 7 29 NR . NR 6 41 5 33 5 36
Pen3 25 49 85 NR NR 11 65 11 75 13 79
Start 3 1 48 94 NR NR 11 67 11 75 13 89
n =100 | .001 35 83 NR NR 11 77 11 89 11 91
GenR 25 191 365 NR NR 57 684 73 1055 60 1150
Start 2 1 192 410 NR NR 60 775 72 1012 62 1153
n = 100 | .001 188 528 NR NR 58 782 63 1062 60 1197
Cali .25 423 819 NR NR 10 409 9 828 26 3855
Start 1 1 429 854 NR NR 10 409 8 570 23 3214
n = 100 | .001 416 905 NR NR 10 372 8 602 26 3948
Cal2 25 112 204 NR. NR 8 117 7 172 8 256
Start 1 1 107 .206 NR ‘NR 8 117 7 172 8 256
n == 100 { .001 113 228 NR NR 8 122 8 199 8 259
Cal3 25 143 270 NR NR 7 159 7 196 9 508
Start 1 1 142 281 NR. NR 7 168 7 196 9 636
n = 100 | .001 138 284 NR NR 7 176 7 195 9 617 |
Table 5C—Miscellaneous smaller functions. Differencing along search direction.

Funection n PLMA QNM MNA TN PBTN BTN
Cheb .25 38 75 32 65 29 121 7 53 10 87 10 104
Start 2 A1 33 71 28 67 24 116 8 68 g 105 9 98
n=20 {.001 .33 90 28 92 30 161 9 90 10 129 ~ 11 164
QOR 25 14 29 23 39 3 3 6 25 5 25 5 29
Start 1 1 14 29 13 27 3 3 6 25 5 25 5 29
n =50 | .001 14 29 13 27 3 3 6 25 5 25 5 29
GOR .25 14 71 29 59 b5 5 7 60 T 7 14
Start 1 d 14 76 29 59 5 5 7 61 7T M 7 74
n=>50 |.001 42 97 29 72 5 7 7 67 7 8 6 61
ChaR .25 40 82 48 97 15 28 11 77 11 121 10 88
Start 4 1 37 76 46 122 16 48 11 75 11 9 10 94
n=25 | .001 43 119 47 164 12 47 14 126 1 4 11 "104

106

r
Table 5D—Sparse finite-differencing.
Function n PLMA QNM MNA TN PBTN BTN
GenRs 25 108 201 128 287 62 202 31 168 42 239 33 196
Start 2 1 119 263 118 323 66 257 33 198 36 218 32 197
n=50 | .001 119 330 118 412 88 392 34 245 37 258 35 252
GenRs 25 191 365 NR NR 57 335 73 415 60 346
Start 2 A - 192 410 NR NR 60 370 72 430 62 398
n = 100 | .001 188 528 NR NR 58 422 63 474 60 441
Calls 25 194 366 162 191 7 9 10 78 8 63 16 120
Start1 | .1 204 401 89 214 6 11 9 73 § 66| -17 130
n =050 1.001 205 456 88 269 6 17 g 88 7 72 13 117
Calls 25 423 819 NR NR 10 79 9 72 26 191
Start 1 d 429 854 NR NR 10 85 8 68 23 178
n = 100 | .001 416 905 NR NR 10 95 8 79 26 227
Cal2s .25 64 106 28 52 4 4 7 50 7 50 8 57
Start 1 1 61 118 28 54 4 4 7 50 7 50 8 57
n=2>50 | .001 60 123 28 67 4 6 7 52 7 51 8§ 59
Cal2s .25 112 204 NR NR 8 57 7 50 8 57
Start 1 1 - 107 206 NR NR 8 57 7 50 8 57
n =100 | .001 113 228 NR NR 8 59 8 58 8 59
Cal3s .25 80 152 | 90 114 6 6 7 50 7 50 7 50
- Start 1 d 78 155 59 135 5 7 7 50 7 52 7 50
n=>50 | .001 77 161 ‘59 - 161 5 11 7 &9 7 58 8 68
Cal3s .25 143 270 NR NR 7 50 7 50|-- 9 57
- Start 1 1 142 281 NR NR 7 51 7 52 g 65
n = 100 | .001 138 284 NR NR ' 7 60 7 60 9 77
QORs .25 14 29 23 39 3 3 6 55 5 46 5 46
Start 1 1 14 29 13 27 3 3 6 55 5 46 5 46
n==50 | .001 14 29 13 27 3 3 6 55 5 46 5 46
GORs 25 14 71 29 59 5 5 7 65 7 65 7 64
Start 1 1 14 76 29 59 LS 3 7 66 7 65 7 64
n=250 | .001 42 97 29 72 5 7 7 73 7 N 6 59
ChaRs .25 40 82 48 97 15 28 11 56 11 - 56 10 51
Start 4 1 37 76 46 122 16 48 11 58 11 .60 10 52
n=25 .001 43 119 47 164 12 47 14 98 1 3 11 70

Table 5E—Totals. To compute the sparse totals, non-sparse results were used whenever a sparse result was

not available.

Function PLMA QNM MNA TN PBTN BTN
Totals, sparse | 4773 10026 Na NA 654 4478| 684 4719 749 5368
Totals, regular | 4773 10026] NA NA 654 7989] 684 10889| 749 24644

107

Tables 6—Comparison of various values of 5 (.25, .1, .001, .5, .7, .9) for the best truncated-Newton routine.

All test functions are used.

Table 6A—Differencing along search direction.

Function n .25 1 001 R i 9
Penl 50 7 29 7 30 3 19 16 41 16 41 16 41
Penl 100 2 1 2 11 2 12 16 42 18 42 16 42
Pen2 50 11 64 12 78 12 95 18 52 18 52 18 51
Pen2 100 6 29 6 30 6 41 10 26 10 26 10 26|
Pen3 50 10 47 9 46 9 54 13 56 13 56 13 56
Pen3 100 11 65 11 67 11 77 14 69 14 69 14 69
GenR 50 31 330 33 348 34 395 35 420 33 336 34 360
GenR 100 57 684 60 755 58 782 60 844 60 802 59 688
Cal1 50 10 199 9 158 9 166 9 190 9 190 9 165
Call 100 10 409 10 409 10 372 10 402 11 444 11 480
Cal2 50 7 69 7 69 7 7 7 69 7 69 7 69
Cal2 100 8 117 8 117 8 122 8 117 8 117 8 117
Cal3 50 7 112 7 112 7 113 7 112 7 112 7 112
Cal3 100 7 159 7 168 7 176 7 159 7 159 7 159
Cheb 20 7 53 8§ 68 9 90 7 53 9 70 12 119
QOR 50 6 25 6 25 6 25 8 25 6 25 6 25
GOR 50 7 60 7 61 7 67 7 60 7 60| 7 60
ChaR 25 11 77 11 75 14 126 14 82 14 82 14 82
Totals 215 2539 220 2627 219 2803 264 2819 265 2752 268 2718
Table 6B—Sparse finite-differencing.
Function n 25 d- 001 5 i 9
GenRs 50 31 168 33 198 34 245 35 197 33 175 34 191
GenRs 100 57 335 60 370 58 422 60 344 60 348 59 327
Calls 50 10 78 9 173 9 .88 9 65 9 65 9 65
Calls 100 10 79 10 85 10 95 10 73 11 81 11 80
Cal2s 50 7 50 7 &0 7 52 7 50 7 50 7 50
“ Cal2s 100 8 57 8 &7 8 59 8 57 8 57 8 57
Cal3s 50 7 50 7 50 7 59 7 50 7 50 7 50
Cal3s 100 7 50 7 51 7 60 7 50 7 50 7 50
QORs 50 6 55 6 55 6 55 6 55 6 55 6 55
GORs 50 7 65 7 66 7 13 7 65 7 65 7 65
ChaRs 25 11 56 11 58 14 98 14 66 14 66 14 66
Totals 161 1043 165 1113 167 1316 170 1072 169 1062 169 1056

108

Tables 7—Comparison of truncated-Newtoh and modified-Newton algorithms, ignoring function/gradien_t :

evaluations required to compute the m'atrix/vector products for TN.

Table 7A—Smaller functions.

+ Function N MNA TN
Penl .25 17 18 7 18
Start 3 1 9 25 7 19
n =50 .001 7 29 3 15
Pen2 . .25 ' 17 17 11 35
Start 3 A 9 31 12 . 42
n =50 001 6 26 12 57
Pen3 .25 40 44 10 14
Start 3 1 12 44 9 16
n =50 . .001 11 48 .9 24
GenR 25 62 202 31 75
Start 2 1 66 257 33 99
n = 50 001 88 392 34 143
Call .25 7 9) 10 18
Start 1. g 6 11 9 19
n=>50 .001 6 17 9 34
Cal2 .25 4 4 7 8
Start 1 1 4 4 7 8
‘ n = 50 001 4 6 7 10
Cal3 .25 6 6 7 8
. Start 1 1 5 7 7 8
n = 50 .001 -5 11 7 17
Table 7B—Miscellaneous smaller functions and totals.
Function n MNA TN -
Cheb .25 29 121 7 16
Start 2 1 ' 24 116 8 17
n=20 .001 30 161 9 29
QOR .25 3 3 6 7
Start 1 N | 3 3 6 7
n = 50 001 - 3 3 8 7
GOR .25 5 5 7 9
Start 1 d 5 5 7 10
n=>50 001 5 7 7 17
ChaR .25 15 28 11 23
Start 4 N 16 48 11 25
n=25 001 12 47 14 56
Totals 541 1753 347 910
109

Bibliography

Brent, R.P. (1973), “Some efficient algorithms for solving systems of non-linear equa-

tions,” SIAM Num. Anal., 10, pp. 327-344.

Broyden, C.G. (1971), “The convergence of an algorithm for solving sparse non-linear

syétems,” Math. Comp., 25, pp. 285-294.

Bunch, J.R., and Parlett, B.N. (1971), “Direct methods for solving symmetric indefinite
systems of linear equé.tions,” SIAM Num. Anal., 8, pp. 639-655.

Bunch, J.R., and Rose, D.J. (1976), Sparse Matrix Computations, Academic Press, New
York.

Concus, P., Golub, G., and O’Leary, D.P. (1976), “A gencralized cpnjugate-gradient
method for the numerical solution of elliptic partial differential equations,” in
Sparse Matrix Computations (J. Bunch and D. Rose, ed.), pp. 309-332, Academic
Press, New York. '

Davidon, W. (1959), “Variable metric methods for minimization,” A.E.C. Res. and
Develop. Report ANL-5990, Argonne National Laboratory.

Dax, A., and Kaniel, 8. (1977), “Pivoting techniques for symmetric Gaussian elimination,”

Num. Math., 28, pp. 221-241.

Dembo, R.S., Eisenstat, S.C., and Steihaug,T. (19‘80), “Inexact Newton methods,” Tech.
Report Series B: 47, School of Organization and Management, Yale University.

Dembo, R.S., and Steihaug, T. (1980), “Truncated-Newton methods for large-scale
optimization,” presented at the ORSA/TIMS Joint National Meeting in
Washington, DC, May 1980.

Dennis, J.E., and Moré¢, J.J. (1977), “Quasi-Newton methods, motivation and theory,”
SIAM Review, 19, pp. 46-89.

Fenelon, M. (1981), “Preconditioned conjugate-gradient-type methods for large-scale un-
constrained optimization,” Ph.D. thesis, Dept. of Operations Research, Stanford
University. ‘

110

| ‘ |

Fletcher, R. (1965), “Function minimization without evaluating derivatives— a review,”

Comput. J., 8, pp. 33-41.

Fletcher, R., and Reeves, C.M. (1964), “Function minimization by conjugate gradients,”

Comput. J., 7, pp. 149-154.

Forsythe, G.E., and Straus, E.G. (1955), “On best conditioned matrices,” Proc. Amer.
Math. Soc., 6, pp. 340-345.

Gill, P.E., Golub, G., Murray, W., and Saunders, M.A. (1974), “Methods for modifying
matrix factorizations,” Math. Comp., 28, pp. 505-536.

Gill, P.E., and Murray, W. (1972), “Quasi-Newton methods for unconstrained optimiza-
tion,” J. Inst. Maths. Applics., 9, pp. 91-108.

Gill, P.E., and Murray, W. (1973a), “The numerical solution of a problem in the calculus
of variations,” in Recent Mathematical Developments in Control (D.J. Bell, ed.),

pp. 97-122, Academic Press, London and New York.

Gill, P.E., and Murray, W. (1973b), “Quasi-Newton methods for linearly constrained
optimization,” Report NAC 32, National Physical Laboratory, England.

Gill, P.E., and Murray, W. (1974a), “Newton-type methods for unconstrained and
linearly constrained optimization,” Math. Prog, 17, pp. 311-350.

Gill, P.E., and Murray, W. (1974b), “Safeguarded steplength algorithms for optimiza-
tion using descent methods,” Report NAC 37, National Physical Laboratory,
England.)

Gill, P.E., and Murray, W. (1976), “Nonlinear least squares and nonlinearly constrained
optimization,” in Numerical Analysis, Lecture Notes in Mathematics no. 506

(G.A. Watson, ed.), pp. 134-147, Springer-Verlag, Berlin.

Gill, P.E., and Murray, W. (1978), “Algorithms for the solution of the nonlinear least-
squares problem,” SIAM Num. Anal., 15, pp. 977-992.

Gill, P.E., and Murray, W. (1979), “Conjugate-gradient methods for large-scale nonlinear
optimization,” Report SOL 79-15, Operations Rescarch Dept., Stanford Univer-.
sity. |

111

Gill, P.E., Murray, W., and Pitﬁeld, R.A. (1972), “The implementation of two revised B
quasi-Newton algorithms for unconstrained optimization,” Report NAC 11, Na-

tional Physical Laboratory, England.

Greenstadt, J.L. (1967), “On the relative inefficiencies of gradient methods,” Math.
Comp, 21, pp. 360-367.

Hebden, M.D. (1973), “An algorithm for minimization using exact.second derivatives,”
Tech. Report T.P. 515, A.E.R.E., Theoretical Physics Division, Harwell,
England.

Hestenes, M. (1980), Conjugate direction methods in optimization, Springer-Verlag, Ber-

lin.

Hestenes, M., anq Stiefel, E. (1952), “Methods of conjugate gradients for solving linear
systems,” J. Res. Nat. Bur. Standards, 49, pp. 409-436.

Lanczos, C. (1950), “An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators,” J. Res. Nat. Bur. Standards, 45, pp.
255-282. '

Luenberger, D.G. (1973), Introduction to linear and nonlinear programming, Addison-

Wesley, Reading, MA.

Marwil, E.S. (1978), “Exploiting sparsity in Newton-like methods,” Ph.D. thesis, Dept.

of Computer Science, Cornell University.

McCormick, G.P., and Pearson, J.D. (1969), “Variable metric methods and unconstrained
' optimization,” in Optimization (R. Fletcher, ed.), pp. 307-325, Academic Press,
London and New York.

Murray, W. (1972), “Second derivative methods,” in “Numerical methods for uncon-

.strained optimization” (W. Murray, ed.), Academic Press, London and New

York; pp. 57-T71.

Murtagh, B.A. and Saunders, M.A. (1978), “Large-scale lincarly constrained optimiza-
tion,” Math. Prog., 14, pp. 41-72.
' 112

Murtagh, B.A. and Saunders, M.A. (1980, revised Februrary 1981), “A projected Lagran-
gian algorithm and its implementation for sparse nonlinear constraints,” Report

80-1R, Operations Research Dept., Stanford University.

Ortega, JM., and Rheinbolt, W.C. (1970), Iterative solution of nonlinear equations in

several variables, Academic Press, London and New York.

Paige, C.C., and Saunders, M.A. (1975), “Solution of sparse indefinite systems of linear
equations,” SIAM Num. Anal., 12, pp. 617-629.

Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood
Cliffs, NJ.

Parlett, B.N., and Scott, D.S. (1979), “The Lanczos algorithm with selective or-
thogonalization,” Math. Comp., 33, pp. 217-238.

Powell, M.J.D. (1970), “A FORTRAN subroutine for unconstrained minimization, requir-
ing first derivatives of the objective function,” Report AERE-R 6469, Atomic
Energy Research Establishment, Harwell, England. .

Powell, M.J.D. (1976), “Some convergence properties of the conjugate gradient method,”
Math. Prog., 11, pp. 42-49.

Powell, M.J.D. (1977), “Restart procedures for the conjugate gradient method,” Math.
Prog., 12, pp. 241-254.

Powell, M.J.D., and Toint, P. (1979), “The estimation of sparse Hessian matrices,” SIAM
Num. Anal., 16, pp. 1060-1074.

Rosenbrock, H.H. (1960), “An automatic method for finding the greatest or least value
of a function,” Comput. J., 3, pp. 175-184.

Schubert, L.K. (1970), “Modification of a quasi-Newton method for nonlinear equations
with a sparse Jacobian,” Math. Comp., 24, pp. 27-30.

Sherman, A.H. (1978), “On Newton-iterative methods for the solution of systems of
nonlinear equations,” SIAM Num. Anal., 15, pp. 755-771.

Steihaug, T. (1980), “Quasi-Newton mecthods for large-scale nonlinear problems,” Ph.D.
thesis, School of Organization and Management, Yale Univcrsity.

113

Stewart, G.W. (1967), “A modification of Davidon’s method to accept diference ap-
proximations of derivatives,” J. ACM, 14, pp. 72-83.

Thapa, M. (1980), “Optimization of unconstrained functions with sparse Hessian

matrices,” Ph.D. thesis, Dept. of Operations Research, Stanford University.

Toint, P. (1978), “Some numerical results using a sparse matrix updating formula in

unconstrained optimization,” Math. Comp., 32, pp. 839-851.

van der Sluis, A. (1969), “Condition numbers and equilibration of matrices,” Num. Math.,

14, pp. 14-23.

Vardi, A. (1980), “A trust region algorithm for unconstrained minimization: convergence

propeities and implementation,” ICASE Report 80-35.

Wilkinson, J.H. (1965), The algebraic eigenvalue problem, Oxford Univerity Press, Lon-

don.

